884 resultados para numerical analysis
Resumo:
This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Rayleigh–Stokes problems have in recent years received much attention due to their importance in physics. In this article, we focus on the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. Implicit and explicit numerical methods are developed to solve the problem. The convergence, stability of the numerical methods and solvability of the implicit numerical method are discussed via Fourier analysis. Moreover, a numerical example is given and the results support the effectiveness of the theoretical analysis.
Resumo:
Fractional reaction–subdiffusion equations are widely used in recent years to simulate physical phenomena. In this paper, we consider a variable-order nonlinear reaction–subdiffusion equation. A numerical approximation method is proposed to solve the equation. Its convergence and stability are analyzed by Fourier analysis. By means of the technique for improving temporal accuracy, we also propose an improved numerical approximation. Finally, the effectiveness of the theoretical results is demonstrated by numerical examples.
Resumo:
Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.
Resumo:
The numerical analysis method of cracking in cast-in-place reinforced concrete slabs is presented. T he results agree w ell with the actual conditions. T he current state of knowledge and some new research findings on crack-control are introduced such as increasing the quantities of the distribution steel, adopting fibre reinforced concrete etc. Some recommended crack-control procedures used in design construction is presented based on the investigation and study of cracking in a frame structure.
Resumo:
A dual-scale model of the torrefaction of wood was developed and used to study industrial configurations. At the local scale, the computational code solves the coupled heat and mass transfer and the thermal degradation mechanisms of the wood components. At the global scale, the two-way coupling between the boards and the stack channels is treated as an integral component of the process. This model is used to investigate the effect of the stack configuration on the heat treatment of the boards. The simulations highlight that the exothermic reactions occurring in each single board can be accumulated along the stack. This phenomenon may result in a dramatic eterogeneity of the process and poses a serious risk of thermal runaway, which is often observed in industrial plants. The model is used to explain how thermal runaway can be lowered by increasing the airflow velocity, the sticker thickness or by gas flow reversal.
Resumo:
Osteocytes are the mature cells and perform as mechanosensors within the bone. The mechanical property of osteocytes plays an important role to fulfill these functions. However, little researches have been done to investigate the mechanical deformation properties of single osteocytes. Atomic Force Microscopy (AFM) is a state-of-art experimental facility for high resolution imaging of tissues, cells and any surfaces as well as for probing mechanical properties of the samples both qualitatively and quantitatively. In this paper, the experimental study based on AFM is firstly used to obtain forceindentation curves of single round osteocytes. The porohyperelastic (PHE) model of a single osteocyte is then developed by using the inverse finite element analysis (FEA) to identify and extract mechanical properties from the experiment results. It has been found that the PHE model is a good candidature for biomechanics studies of osteocytes.
Resumo:
The aim of this paper is to determine the creep and relaxation responses of single chondrocytes in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of single chondrocytes at the strain-rate of 7.05 s-1. This result was then employed in inverse finite element analysis (FEA) using porohyperelastic (PHE) idealization of the cells to determine their mechanical properties. The PHE model results agreed well with AFM experimental data. This PHE model was then utilized to study chondrocyte’s creep and relaxation behaviors. The results revealed that the effect of fluid was predominant for cell’s mechanical behaviors and that the PHE is a good model for biomechanics studies of chondrocytes.
Resumo:
A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.