980 resultados para nonlinear error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Few studies have specifically investigated the functional effects of uncorrected astigmatism on measures of reading fluency. This information is important to provide evidence for the development of clinical guidelines for the correction of astigmatism. Methods: Participants included 30 visually normal, young adults (mean age 21.7 ± 3.4 years). Distance and near visual acuity and reading fluency were assessed with optimal spectacle correction (baseline) and for two levels of astigmatism, 1.00DC and 2.00DC, at two axes (90° and 180°) to induce both against-the-rule (ATR) and with-the-rule (WTR) astigmatism. Reading and eye movement fluency were assessed using standardized clinical measures including the test of Discrete Reading Rate (DRR), the Developmental Eye Movement (DEM) test and by recording eye movement patterns with the Visagraph (III) during reading for comprehension. Results: Both distance and near acuity were significantly decreased compared to baseline for all of the astigmatic lens conditions (p < 0.001). Reading speed with the DRR for N16 print size was significantly reduced for the 2.00DC ATR condition (a reduction of 10%), while for smaller text sizes reading speed was reduced by up to 24% for the 1.00DC ATR and 2.00DC condition in both axis directions (p<0.05). For the DEM, sub-test completion speeds were significantly impaired, with the 2.00DC condition affecting both vertical and horizontal times and the 1.00DC ATR condition affecting only horizontal times (p<0.05). Visagraph reading eye movements were not significantly affected by the induced astigmatism. Conclusions: Induced astigmatism impaired performance on selected tests of reading fluency, with ATR astigmatism having significantly greater effects on performance than did WTR, even for relatively small amounts of astigmatic blur of 1.00DC. These findings have implications for the minimal prescribing criteria for astigmatic refractive errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of conceptual business process models is highly relevant for the design of corresponding information systems. In particular, a precise measurement of model characteristics can be beneficial from a business perspective, helping to save costs thanks to early error detection. This is just as true from a software engineering point of view. In this latter case, models facilitate stakeholder communication and software system design. Research has investigated several proposals as regards measures for business process models, from a rather correlational perspective. This is helpful for understanding, for example size and complexity as general driving forces of error probability. Yet, design decisions usually have to build on thresholds, which can reliably indicate that a certain counter-action has to be taken. This cannot be achieved only by providing measures; it requires a systematic identification of effective and meaningful thresholds. In this paper, we derive thresholds for a set of structural measures for predicting errors in conceptual process models. To this end, we use a collection of 2,000 business process models from practice as a means of determining thresholds, applying an adaptation of the ROC curves method. Furthermore, an extensive validation of the derived thresholds was conducted by using 429 EPC models from an Australian financial institution. Finally, significant thresholds were adapted to refine existing modeling guidelines in a quantitative way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous guidance of agricultural vehiclesis vital as mechanized farming production becomes more prevalent. It is crucial that tractor-trailers are guided with accuracy in both lateral and longitudinal directions, whilst being affected by large disturbance forces, or slips, owing to uncertain and undulating terrain. Successful research has been concentrated on trajectory control which can provide longitudinal and lateral accuracy if the vehicle moves without sliding, and the trailer is passive. In this paper, the problem of robust trajectory tracking along straight and circular paths of a tractor-steerable trailer is addressed. By utilizing a robust combination of backstepping and nonlinear PI control, a robust, nonlinear controller is proposed. For vehicles subjected to sliding, the proposed controller makes the lateral deviations and the orientation errors of the tractor and trailer converge to a neighborhood near the origin. Simulation results are presented to illustrate that the suggested controller ensures precise trajectory tracking in the presence of slip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Error correction is perhaps the most widely used method for responding to student writing. While various studies have investigated the effectiveness of providing error correction, there has been relatively little research incorporating teachers' beliefs, practices, and students' preferences in written error correction. The current study adopted features of an ethnographic research design in order to explore the beliefs and practices of ESL teachers, and investigate the preferences of L2 students regarding written error correction in the context of a language institute situated in the Brisbane metropolitan district. In this study, two ESL teachers and two groups of adult intermediate L2 students were interviewed and observed. The beliefs and practices of the teachers were elicited through interviews and classroom observations. The preferences of L2 students were elicited through focus group interviews. Responses of the participants were encoded and analysed. Results of the teacher interviews showed that teachers believe that providing written error correction has advantages and disadvantages. Teachers believe that providing written error correction helps students improve their proof-reading skills in order to revise their writing more efficiently. However, results also indicate that providing written error correction is very time consuming. Furthermore, teachers prefer to provide explicit written feedback strategies during the early stages of the language course, and move to a more implicit strategy of providing written error correction in order to facilitate language learning. On the other hand, results of the focus group interviews suggest that students regard their teachers' practice of written error correction as important in helping them locate their errors and revise their writing. However, students also feel that the process of providing written error correction is time consuming. Nevertheless, students want and expect their teachers to provide written feedback because they believe that the benefits they gain from receiving feedback on their writing outweigh the apparent disadvantages of their teachers' written error correction strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models of cell invasion incorporating directed cell movement up a gradient of an external substance and carrying capacity-limited proliferation give rise to travelling wave solutions. Travelling wave profiles with various shapes, including smooth monotonically decreasing, shock-fronted monotonically decreasing and shock-fronted nonmonotone shapes, have been reported previously in the literature. The existence of tacticallydriven shock-fronted nonmonotone travelling wave solutions is analysed for the first time. We develop a necessary condition for nonmonotone shock-fronted solutions. This condition shows that some of the previously reported shock-fronted nonmonotone solutions are genuine while others are a consequence of numerical error. Our results demonstrate that, for certain conditions, travelling wave solutions can be either smooth and monotone, smooth and nonmonotone or discontinuous and nonmonotone. These different shapes correspond to different invasion speeds. A necessary and sufficient condition for the travelling wave with minimum wave speed to be nonmonotone is presented. Several common forms of the tactic sensitivity function have the potential to satisfy the newly developed condition for nonmonotone shock-fronted solutions developed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key challenge for sports coaches is to provide performers with learning environments that result in sustainable motivation. In this paper, we will demonstrate that programmes based around the principles of Nonlinear Pedagogy can support the three basic psychological needs that underpin self-determined motivation. Coaches can therefore ensure that practice sessions provide for intrinsic motivation with its associated motivational and emotional benefits.