921 resultados para non-dissociative electron capture
Resumo:
We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that—with the help of background literature—should be accessible to physics undergraduates. The discussion aims at combining methodology with an emphasis on the underlying physics through examples. We discuss and compare two forces present only under current—the non-conservative electron wind force and a Lorentz-like velocity-dependent force. It is shown that in metallic nanowires both display significant features at the wire surface, making it a candidate for the nucleation of current-driven structural transformations and failure. Finally we discuss the problem of force noise and the limitations of Ehrenfest dynamics
Resumo:
Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.
Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.
Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.
Resumo:
Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.
Resumo:
Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of Ni-58/(Fe-54 + Ni-56), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova (SN) that produced a Ni/Fe ratio of 3.4 +/- 1.2 times solar, we find that burning of a fuel with neutron excess eta approximate to 6 x 10(-3) is required. Unless the progenitor metallicity is over five times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. SNe producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of M-ZAMS less than or similar to 13 M-circle dot stars exploding with a delay time of less than one second (M-cut < 1.5 M-circle dot) are able to achieve such silicon-shell ejection. SNe that produce solar or subsolar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic entropy burning outside the iron core, and neutrino-neutronization obtained in electron capture models remains the only viable explanation.
Resumo:
The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.
Resumo:
Fabricating Ge and Si integrated structures with nanoscale accuracy is a challenging pursuit essential for novel advances in electronics and photonics. While several scanning probe-based techniques have been proposed, no current technique offers control of nanostructure size, shape, placement, and chemical composition. To this end, atomic force microscope direct write uses a high electric field (> 109 V m-1) to create nanoscale features as fast as 1 cm s-1 by reacting a liquid precursor with a biased AFM tip. In this work, I present the first results on fabricating inorganic nanostructures via AFM direct write. Using diphenylgermane (DPG) and diphenylsilane (DPS), carbon-free germanium and silicon nanostructures (SIMS, x-ray PEEM) are fabricated. For this chemistry, I propose a model that involves electron capture and precursor fragmentation under the high electric field. To verify this model, experimental data and simulations are presented. High field chemistry for DPG and DPS has also been demonstrated for both sequential deposition and the creation of nanoscale heterostuctures, in addition to microscale deposition using a flexible stamp approach. This high field chemistry approach to the deposition of organometallic precursors could offer a low-cost, high throughput alternative for future optical, electronic, and photovoltaic applications.
Resumo:
This paper describes a comparison of adaptations of the QuEChERS (quick, easy, cheap, effective, rugged and safe) approach for the determination of 14 organochlorine pesticide (OCP) residues in strawberry jam by concurrent use of gas chromatography (GC) coupled to electron capture detector (ECD) and GC tandem mass spectrometry (GC-MS/MS). Three versions were tested based on the original QuEChERS method. The results were good (overall average of 89% recoveries with 15% RSD) using the ultrasonic bath at five spiked levels. Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), were determined for each pesticide. LOD ranged from 0.8 to 8.9 microg kg-1 ; LOQ was in the range of 2.5–29.8 microg kg- 1; and calibration curves were linear (r2>0.9970) in the whole range of the explored concentrations (5–100 microg kg- 1). The LODs of these pesticides were much lower than the maximum residue levels (MRLs) allowed in Europe for strawberries. The method was successfully applied to the quantification of OCP in commercially available jams. The OCPs were detected lower than the LOD.
Resumo:
A method for the determination of some pesticide residues in must and wine samples was developed using solid-phase microextraction (SPME) and gas chromatography – electron capture detection (GC/ECD). The procedure only needs dilution as sample pre-treatment and is therefore simple, fast and solvent-free. Eight fungicides (vinclozolin, procymidone, iprodione, penconazole, fenarimol, folpet, nuarimol and hexaconazole), one insecticide (chlorpyriphos) and two acaricides (bromopropylate and tetradifon) can be quantified. Good linearity was observed for all the compounds in the range 5–100 µg/L. The reproducibility of the measurements was found acceptable (with RSD’s below 20%). Detection limits of 11 µg/L, on average, are sufficiently below the proposed maximum residue limits (MRL’s) for these compounds in wine. The analytical method was applied to the determination of these compounds in Portuguese must and wine samples from the Demarcated Region of Alentejo, where any residues could be detected.
Resumo:
Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze α-cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time—24 hours for both cork (1–2 mm and 3–4 mm) and GAC. For the studied α-cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1–2 mm have the maximum amount of adsorbed α-cypermethrin (qm) (303 μg/g); followed by GAC (186 μg/g) and cork 3-4 mm (136 μg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the α-cypermethrin adsorption phenomena on GAC, while α-cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing α-cypermethrin from water.
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.
Resumo:
Exchange reactions between molecular complexes and excess acid
or base are well known and have been extensively surveyed in the
literature(l). Since the exchange mechanism will, in some way
involve the breaking of the labile donor-acceptor bond, it follows
that a discussion of the factors relating to bonding in molecular complexes
will be relevant.
In general, a strong Lewis base and a strong Lewis acid form a
stable adduct provided that certain stereochemical requirements are
met.
A strong Lewis base has the following characteristics (1),(2)
(i) high electron density at the donor site.
(ii) a non-bonded electron pair which has a low ionization potential
(iii) electron donating substituents at the donor atom site.
(iv) facile approach of the site of the Lewis base to the
acceptor site as dictated by the steric hindrance of the
substituents.
Examples of typical Lewis bases are ethers, nitriles, ketones,
alcohols, amines and phosphines.
For a strong Lewis acid, the following properties are important:(
i) low electron density at the acceptor site.
(ii) electron withdrawing substituents. (iii) substituents which do not interfere with the close
approach of the Lewis base.
(iv) availability of a vacant orbital capable of accepting
the lone electron pair of the donor atom.
Examples of Lewis acids are the group III and IV halides such
(M=B, AI, Ga, In) and MX4 - (M=Si, Ge, Sn, Pb).
The relative bond strengths of molecular complexes have been
investigated by:-
(i)
(ii)
(iii)
(iv)
(v]
(vi)
dipole moment measurements (3).
shifts of the carbonyl peaks in the IIIR. (4) ,(5), (6) ..
NMR chemical shift data (4),(7),(8),(9).
D.V. and visible spectrophotometric shifts (10),(11).
equilibrium constant data (12), (13).
heats of dissociation and heats of reactions (l~),
(16), (17), (18), (19).
Many experiments have bben carried out on boron trihalides in
order to determine their relative acid strengths. Using pyridine,
nitrobenzene, acetonitrile and trimethylamine as reference Lewis
bases, it was found that the acid strength varied in order:RBx3 >
BC1
3 >BF 3
• For the acetonitrile-boron trihalide and trimethylamine
boron trihalide complexes in nitrobenzene, an-NMR study (7) showed
that the shift to lower field was. greatest for the BB~3 adduct ~n~
smallest for the BF 3 which is in agreement with the acid strengths. If electronegativities of the substituents were the only
important effect, and since c~ Br ,one would expect
the electron density at the boron nucleus to vary as BF3
Resumo:
Ox amyl , an insecticide/nematicide with the chemical name; methyl ~'. ~·-dimethyl-~-(methylcarbamoyl)oxy-l-thiooxamimidate, and its major degradation compound; oxime or oximino compound, methyl ~',~'-dimethyl-~-hydroxy-l-thiooxamimidate were studied in this work. NMR and mass spectrometry were utilized in the structural studies. An attempt was made to explain the fragmentation patterns of some major peaks in the mass spectra of oxamyl and oxime. A new gas chromatographic method for the detection and determination of submicrogram levels of intact oxamyl using a electron-capture detector was developed. The principle of this method is to produce a derivative which is highly sensitive to an electron-capture detector. The derivative described is dinitrophenyl methylamine( DNPMA ) • Experimental conditions such as pH , reaction temperature , reaction time, the amount of reagent ( Dinitrofluaro benzene) etc. were thoroughly investigated and optimized. This method was successfully applied to the determination of oxamyl residues in tobacco leaves and soil. Throughout this J9D:oject , thin layer chromatography was also used in the separation:and clean up of oxamyl and oxime samples.
Resumo:
Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.
Resumo:
The doubly excited 2s2p ^1P_1 level of Kr^{34+} populated via resonant transfer and excitation (RTE) feeds selectively the metastable ls2s ^1 S_0 state which can only decay via simultaneous emission of two photons to the ground state 1s^2 ^1 S_0. X-ray/X-ray coincidence measurements in heavy ionatom collisions enable the direct measurement of the spectral distribution of the two-photon decay in He-like ions. In addition, we observe strong photon cascades indueed by radiative electron capture.