989 resultados para nitrogen biological fixation
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
The measurement of natural N-15 abundance is a well-established technique for the identification and quantification of biological N-2 fixation in plants. Associative N-2 fixing bacteria have been isolated from sugarcane and reported to contribute potentially significant amounts of N to plant growth and development. It has not been established whether Australian commercial sugarcane receives significant input from biological N-2 fixation, even though high populations of N-2 fixing bacteria have been isolated from Australian commercial sugarcane fields and plants. In this study, delta(15)N measurements were used as a primary measure to identify whether Australian commercial sugarcane was obtaining significant inputs of N via biological N-2 fixation. Quantification of N input, via biological N-2 fixation, was not possible since suitable non-N-2 fixing reference plants were not present in commercial cane fields. The survey of Australian commercially grown sugarcane crops showed the majority had positive leaf delta(15)N values (73% >3.00parts per thousand, 63% of which were
Resumo:
It is becoming increasingly clear that species of smaller body size tend to be less vulnerable to contemporary extinction threats than larger species, but few studies have examined the mechanisms underlying this pattern. In this paper, data for the Australian terrestrial mammal fauna are used to ask whether higher reproductive output or smaller home ranges can explain the reduced extinction risk of smaller species. Extinct and endangered species do indeed have smaller litters and larger home ranges for their body size than expected under a null model. In multiple regressions, however, only litter size is a significant predictor of extinction risk once body size and phylogeny are controlled for. Larger litters contribute to fast population growth, and are probably part of the reason that smaller species are less extinction-prone. The effect of litter size varies between the mesic coastal regions and the and interior of Australia, indicating that the environment a species inhabits mediates the effect of biology on extinction risk. These results suggest that predicting extinction risk from biological traits is likely to be a complex task which must consider explicitly interactions between biology and environment.
Resumo:
In order to meet increasingly stringent European discharge standards, new applications and control strategies for the sustainable removal of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offers great opportunities to remove ammonia in fully autotrophic systems with biomass retention. No organic carbon is needed in such nitrogenremoval system, since ammonia is used a selectron donor for nitrite reduction. The nitrite can be produced from ammonia in oxygen-limited biofilm systems or in continuous processes without biomass retention. For successful implementation of the combined processes, accurate biosensors for measuring ammonia and nitrite concentrations, insight inthe complex microbial communities involved, and new control strategies have to be developed and evaluated.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.
Resumo:
Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii) evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.
Resumo:
Green manuring is recognized as a viable alternative to improve nutrient cycling in soils. The aim of this study was to evaluate the phytomass production and nutrient accumulation in shoots of the summer green manures jack bean [Canavalia ensiformis (L.) DC.], dwarf pigeon pea (Cajanus cajanvar var. Flavus DC.), dwarf mucuna [Mucuna deeringiana (Bort) Merr] and sunn hemp (Crotalaria juncea L.), under nitrogen fertilization and/or inoculation with N-fixing bacteria. A split plot design was arranged with the four Fabaceae species as main plots and nitrogen fertilization (with and without) and inoculation with diazotrophic bacteria (with and without) as the subplots, in a 2² factorial. The experiment was arranged as a randomized complete block design with four replications. In the conditions of this trial, the sunn hemp had the highest production of shoot phytomass (12.4 Mg ha-1) and nutrient accumulation, while the dwarf mucuna had the lowest production of shoot phytomass (3.9 Mg ha-1) and nutrient accumulation. The results showed no effect of nitrogen fertilization or inoculation with N-fixing bacteria on the production of shoot phytomass and nutrient accumulation, except for inoculation without nitrogen fertilization, resulting in greater P accumulation (p <0.05) in the sunn hemp and greater Zn and Mn accumulation in the dwarf mucuna. These findings indicate that N fertilization or inoculation with N2-fixing bacteria for Fabaceae are low efficiency practices in the edaphoclimatic conditions of this study.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Engenharia Sanitária
Resumo:
ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
En aquest estudi es realitzà eliminació biològica simultània de fòsfor i nitrogen en un Reactor Discontinu Seqüencial (SBR), el qual conté una biomassa enriquida amb Organismes Desnitrificadors Acumuladors de Fòsfor (DPAO) que utilitzen com a única font de carboni l’àcid propiònic i com acceptors d’electrons: nitrit en la fase anòxica i oxigen en l’aeròbica. L’SBR opera amb cicle de 8 h alternant fase anaeròbica, anòxica i aeròbica. El seguiment del sistema es realitzà mitjançant mesures on-line (titrimetria) i off-line (quantificació d’àcid propiònic, nitrit i fòsfor), utilitzant l’HPLC per quantificar l’àcid propiònic i cromatografia iònica per les mesures de nitrit i fòsfor. Amb aquest sistema es pretén augmentar la captació de fòsfor en la fase anòxica fet que s’aconseguí realitzant diferents canvis al reactor per tal de maximitzar el consum de nitrit en aquesta fase, ja fos allargant el temps de fase o augmentant la concentració de biomassa. Aquest experiment ha suposat un augment de la captació de fòsfor (33 mg P-PO4 3-/L), de l’eliminació neta de fòsfor (17 mg P-PO4 3-/L) i de consum de nitrit (27 mg N-NO2-). Per altra banda, es pretenia veure els efectes a curt termini de l’eliminació de la fase aeròbica a partir del seguiment de 2 cicle puntuals i d’un cicle de 32 h sense fase aeròbica. En ambdós casos s’aconseguí una eliminació neta de fòsfor.