997 resultados para neurofunctional compensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron-annihilation lifetime and positron-annihilation Doppler-broadening (PADB) spectroscopies have been employed to investigate the formation of vacancy-type compensation defects in n-type undoped liquid encapsulated Czochrolski grown InP, which undergoes conduction-type conversions under high temperature annealing. N-type InP becomes p-type semiconducting by short time annealing at 700 degreesC, and then turns into n-type again after further annealing but with a much higher resistivity. Long time annealing at 950 degreesC makes the material semi-insulating. Positron lifetime measurements show that the positron average lifetime tau(av) increases from 245 ps to a higher value of 247 ps for the first n-type to p-type conversion and decreases to 240 ps for the ensuing p-type to n-type conversion. The value of tau(av) increases slightly to 242 ps upon further annealing and attains a value of 250 ps under 90 h annealing at 950 degreesC. These results together with those of PADB measurements are explained by the model proposed in our previous study. The correlation between the characteristics of positron annihilation and the conversions of conduction type indicates that the formation of vacancy-type defects and the progressive variation of their concentrations during annealing are related to the electrical properties of the bulk InP material. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of hydrogen dilution, subtle boron compensation, and light-soaking on the gap states of hydrogenated amorphous silicon films (a-Si:H) near and above the threshold of microcrystallinity have been investigated in detail by the constant photocurrent method and the improved phase-shift analysis of modulated photocurrent technique. It is shown that high hydrogen dilution near the threshold of microcrystallinity leads to a more ordered network structure and to the redistribution of gap states; it gives rise to a small peak at about 0.55 eV and a shoulder at about 1.2 eV below the conduction band edge, which are associated with the formation of microcrystallites embedded in the amorphous silicon host matrix. A concurrent subtle boron compensation is demonstrated to prevent excessive formation of microcrystallinity, and to help promote the growth of the ordered regions and reduce the density of gap defect states, particularly those associated with microcrystallites. Hydrogen-diluted and appropriately boron-compensated a-Si:H films deposited near the threshold of microcrystallinity show the lowest density of the defects in both the annealed and light-soaked states, and hence, the highest performance and stability. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of hydroen-indium vacancy complex VInH4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The VInH4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to similar to 10(16) cm(-3) in as-grown liquid encapsulated Czochralski InP. The concentration of the VInH4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. (C) 1998 American Institute of Physics, [S0003-6951(98)04435-0].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-insulating (SI) InP obtained by iron phosphide ambient annealing has very low concentration of deep level defects and better electrical property than SI-InP annealed in phosphorus ambient. The defect suppression phenomenon correlates with Fe diffusion and substitution in the annealing process. Analysis of the experimental result suggests that a high activation ratio of incorporated Fe in InP has an effect of defect suppression in Fe-doped and Fe-diffused SI-InP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel technique to broaden and reshape the spectrum of picosecond laser pulse based on the seeder of gain switch laser diode and Yb(3+)-doped fiber amplifier (YDFA). From compensating the seed spectrum with the gain of YDFA, the seed pulse of 7 nm bandwidth is broadened to 20 nm, and the flat top spectral shape is obtained as well. A self-made fiber coupled tunable filter is used to realize the tunable output laser with the wavelength range from 1053 nm to 1073 nm and the line width of 1.4 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of alpha-power chirped fiber Bragg gratings for dispersion cancellation in an optical fiber link is discussed. Numerical and theoretical investigation of recompressing the dispersion-broadened pulse by using alpha-power chirped gratings is made, which shows that, the dispersion-broadened Gaussian pulse after 100 km standard fiber (with zero dispersion at lambda = 1.3 mu m) trnasmission at lambda = 1.55 mu m with initial width of T-FWHM = 33ps (full width at half maximum) can be perfectly recompressed with the peak reflectivity of 82% by using a 30 mm long alpha-power chirped fiber grating with proper a value and optimal grating parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input Was implemented in a 0.18μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3μs,and the phase noise is -108 dBc/Hz@1MHz.The reference spur is -52 dBc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that charge compensated CaMoO4:Eu3+ phosphors show greatly enhanced red emission under 393 and 467 nm-excitation, compared with CaMoO4:Eu3+ without charge compensation. Two approaches to charge compensation, (a) 2Ca(2+) -> EU3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Ca(2+) -> 2EU(3+) + vacancy, are investigated. The influence of sintering temperature and Eu3+ concentration on the luminescent property of phosphor samples is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.