826 resultados para negative emotions
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create hypovigilance and impair performance towards critical events. Identifying such impairment in monotonous conditions has been a major subject of research, but no research to date has attempted to predict it in real-time. This pilot study aims to show that performance decrements due to monotonous tasks can be predicted through mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants‟ performance. The framework for prediction developed on this task could be extended to a monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to an important decline in performance in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
This paper reports on a six month longitudinal study exploring people’s personal and social emotional experience with health related portable interactive devices (PIDs). The focus is on emotions and how health PIDs mediate this experience in everyday contexts. The study reported here is an extension of a previous experiment conducted by the authors exploring media related PIDs [1]. The findings identified interesting aspects of health device interaction. Findings revealed people interact with health PIDs emotionally both at a personal and a social level. However, in contrast to media PIDs, participants reported significantly less social experiences than personal experiences. Nevertheless, the social level plays an important role such that negative social experiences had a significant influence on the perceived emotional experience over the course of six months. When no negative social experiences were reported the emotional experience over the course of six months became neutral. The findings are discussed in regards to their significance to the field of design, their implication for future health PID design and future research directions.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
Attachment theory has been conceptualised as an affect regulation theory, proposing that attachment is associated with the expression and recognition of emotions as well as interpersonal functioning. Previous research has reported affect regulation difficulties in substance use disorders and addiction has been considered an attachment disorder. However, scarce empirical research exists on the relationship of attachment in relation to affect regulation and interpersonal functioning in those with substance use problems. Thus, the objective of the present study was to investigate potential associations between attachment, negative mood regulation (NMR) expectancies, fear of intimacy and self-differentiation in substance abusers. The revised adult attachment scale (RAAS), the NMR expectancies scale, the fear of intimacy scale and the differentiation of self inventory were administered to a sample of 100 substance use disorder inpatients. Attachment accounted for significant variance in NMR expectancies and was also a strong predictor of fear of intimacy. The predictive utility of attachment also extended to self-differentiation, suggesting that attachment was strongly related to overall self-differentiation score, Emotional reactivity, Emotional cut-off and I position. These findings support attachment theory suggesting that attachment is associated with and predicts affect regulation abilities and difficulties in interpersonal functioning in a sample of substance use disorder inpatients. The inclusion and assessment of attachment appears to be important in the development of treatment programmes for substance abusing individuals.
Resumo:
Objective Alcohol-related implicit (preconscious) cognitive processes are established and unique predictors of alcohol use, but most research in this area has focused on alcohol-related implicit cognition and anxiety. This study extends this work into the area of depressed mood by testing a cognitive model that combines traditional explicit (conscious and considered) beliefs, implicit alcohol-related memory associations (AMAs), and self-reported drinking behavior. Method Using a sample of 106 university students, depressed mood was manipulated using a musical mood induction procedure immediately prior to completion of implicit then explicit alcohol-related cognition measures. A bootstrapped two-group (weak/strong expectancies of negative affect and tension reduction) structural equation model was used to examine how mood changes and alcohol-related memory associations varied across groups. Results Expectancies of negative affect moderated the association of depressed mood and AMAs, but there was no such association for tension reduction expectancy. Conclusion Subtle mood changes may unconsciously trigger alcohol-related memories in vulnerable individuals. Results have implications for addressing subtle fluctuations in depressed mood among young adults at risk of alcohol problems.
Resumo:
A favorable product country of origin (e.g., an automobile made in Germany) is often considered an asset by marketers. Yet a challenge in today's competitive environment is how marketers of products from less favorably regarded countries can counter negative country of origin perceptions. Three studies investigate how mental imagery can be used to reduce the effects of negative country of origin stereotypes. Study 1 reveals that participants exposed to country of origin information exhibit automatic stereotype activation. Study 2 shows that self-focused counterstereotypical mental imagery (relative to other-focused mental imagery) significantly inhibits the automatic activation of negative country of origin stereotypes. Study 3 shows that this lessening of automatic negative associations persists when measured one day later. The results offer important implications for marketing theory and practice.
Resumo:
Background: Pregnant women exposed to traffic pollution have an increased risk of negative birth outcomes. We aimed to investigate the size of this risk using a prospective cohort of 970 mothers and newborns in Logan, Queensland. ----- ----- Methods: We examined two measures of traffic: distance to nearest road and number of roads around the home. To examine the effect of distance we used the number of roads around the home in radii from 50 to 500 metres. We examined three road types: freeways, highways and main roads.----- ----- Results: There were no associations with distance to road. A greater number of freeways and main roads around the home were associated with a shorter gestation time. There were no negative impacts on birth weight, birth length or head circumference after adjusting for gestation. The negative effects on gestation were largely due to main roads within 400 metres of the home. For every 10 extra main roads within 400 metres of the home, gestation time was reduced by 1.1% (95% CI: -1.7, -0.5; p-value = 0.001).----- ----- Conclusions: Our results add weight to the association between exposure to traffic and reduced gestation time. This effect may be due to the chemical toxins in traffic pollutants, or because of disturbed sleep due to traffic noise.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.
Resumo:
Negative mood regulation (NMR) expectancies, stress, anxiety, depression and affect intensity were examined by means of self-report questionnaires in 158 volunteers, including 99 clients enrolled in addiction treatment programs. As expected, addicts reported significantly higher levels of stress, anxiety, depression and affect intensity and lower levels of NMR compared to non-addict controls. NMR was negatively correlated with stress, anxiety, depression and affect intensity. The findings indicate that mood self-regulation is impaired in addicts. Low NMR and high affect intensity may predispose to substance abuse and addiction, or alternatively may reflect chronic drug-induced affective dysregulation.
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.
Resumo:
In humans the presence of negative affect is thought to promote food intake, but there is widespread variability. Susceptibility to negative affect-induced eating may depend on trait eating behaviours, notably ‘emotional eating’, ‘restrained eating’ and ‘disinhibited eating’, but the evidence is not consistent. In the present study, 30 non-obese, non-dieting women were given access to palatable food whilst in a state of negative or neutral affect, induced by a validated autobiographical recall technique. As predicted, food intake was higher in the presence of negative affect; however, this effect was moderated by the pattern of eating behaviour traits and enhanced wanting for the test food. Specifically, the High Restraint-High Disinhibition subtype in combination with higher scores on emotional eating and food wanting was able to predict negative-affect intake (adjusted R2 = .61). In the absence of stress, individuals who are both restrained and vulnerable to disinhibited eating are particularly susceptible to negative affect food intake via stimulation of food wanting. Identification of traits that predispose individuals to overconsume and a more detailed understanding of the specific behaviours driving such overconsumption may help to optimise strategies to prevent weight gain.
Resumo:
Local image feature extractors that select local maxima of the determinant of Hessian function have been shown to perform well and are widely used. This paper introduces the negative local minima of the determinant of Hessian function for local feature extraction. The properties and scale-space behaviour of these features are examined and found to be desirable for feature extraction. It is shown how this new feature type can be implemented along with the existing local maxima approach at negligible extra processing cost. Applications to affine covariant feature extraction and sub-pixel precise corner extraction are demonstrated. Experimental results indicate that the new corner detector is more robust to image blur and noise than existing methods. It is also accurate for a broader range of corner geometries. An affine covariant feature extractor is implemented by combining the minima of the determinant of Hessian with existing scale and shape adaptation methods. This extractor can be implemented along side the existing Hessian maxima extractor simply by finding both minima and maxima during the initial extraction stage. The minima features increase the number of correspondences by two to four fold. The additional minima features are very distinct from the maxima features in descriptor space and do not make the matching process more ambiguous.