960 resultados para multimedia applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadly speaking, axiology is the study of values. Axiologies are expressed materially in patterns of choices that are both culture-bound and definitive of different cultures. They are expressed in the language we use; in the friends we keep; in the clothes we wear; in what we read, write, and watch; in the technologies we use; in the gods we believe in and pray to; in the music we make and listen to—indeed, in every kind of activity that can be counted as a definitive element of culture. In what follows, I describe the axiological underpinnings of two closely related multimedia repository projects— Australian Creative Resources Online (ACRO) and The Canadian Centre for Cultural Innovation (CCCI)—and how these are oriented towards a potentially liberating role for digital repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divining the Martyr is a project developed in order to achieve the Master of Arts (Research) degree. This is composed of 70% creative work displayed in an exhibition and 30% written work contained in this exegesis. The project was developed through practice-led research in order to answer the question “In what ways can creative practice synthesize and illuminate issues of martyrdom in contemporary makeover culture?” The question is answered using a postmodern framework about martyrdom as it is manifested in contemporary society. The themes analyzed throughout this exegesis relate to concepts about sainthood and makeover culture combined with actual examples of tragic cases of cosmetic procedures. The outcomes of this project fused three elements: Mexican cultural history, Mexican (Catholic) religious traditions, and cosmetic makeover surgery. The final outcomes were a series of installations integrating contemporary and traditional interdisciplinary media, such as sound, light, x-ray technology, sculpture, video and aspects of performance. These creative works complement each other in their presentation and concept, promoting an original contribution to the theme of contemporary martyrdom in makeover culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current multimedia Web search engines still use keywords as the primary means to search. Due to the richness in multimedia contents, general users constantly experience some difficulties in formulating textual queries that are representative enough for their needs. As a result, query reformulation becomes part of an inevitable process in most multimedia searches. Previous Web query formulation studies did not investigate the modification sequences and thus can only report limited findings on the reformulation behavior. In this study, we propose an automatic approach to examine multimedia query reformulation using large-scale transaction logs. The key findings show that search term replacement is the most dominant type of modifications in visual searches but less important in audio searches. Image search users prefer the specified search strategy more than video and audio users. There is also a clear tendency to replace terms with synonyms or associated terms in visual queries. The analysis of the search strategies in different types of multimedia searching provides some insights into user’s searching behavior, which can contribute to the design of future query formulation assistance for keyword-based Web multimedia retrieval systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for multimedia is an important activity for users of Web search engines. Studying user's interactions with Web search engine multimedia buttons, including image, audio, and video, is important for the development of multimedia Web search systems. This article provides results from a Weblog analysis study of multimedia Web searching by Dogpile users in 2006. The study analyzes the (a) duration, size, and structure of Web search queries and sessions; (b) user demographics; (c) most popular multimedia Web searching terms; and (d) use of advanced Web search techniques including Boolean and natural language. The current study findings are compared with results from previous multimedia Web searching studies. The key findings are: (a) Since 1997, image search consistently is the dominant media type searched followed by audio and video; (b) multimedia search duration is still short (>50% of searching episodes are <1 min), using few search terms; (c) many multimedia searches are for information about people, especially in audio search; and (d) multimedia search has begun to shift from entertainment to other categories such as medical, sports, and technology (based on the most repeated terms). Implications for design of Web multimedia search engines are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tagging has become one of the key activities in next generation websites which allow users selecting short labels to annotate, manage, and share multimedia information such as photos, videos and bookmarks. Tagging does not require users any prior training before participating in the annotation activities as they can freely choose any terms which best represent the semantic of contents without worrying about any formal structure or ontology. However, the practice of free-form tagging can lead to several problems, such as synonymy, polysemy and ambiguity, which potentially increase the complexity of managing the tags and retrieving information. To solve these problems, this research aims to construct a lightweight indexing scheme to structure tags by identifying and disambiguating the meaning of terms and construct a knowledge base or dictionary. News has been chosen as the primary domain of application to demonstrate the benefits of using structured tags for managing the rapidly changing and dynamic nature of news information. One of the main outcomes of this work is an automatically constructed vocabulary that defines the meaning of each named entity tag, which can be extracted from a news article (including person, location and organisation), based on experts suggestions from major search engines and the knowledge from public database such as Wikipedia. To demonstrate the potential applications of the vocabulary, we have used it to provide more functionalities in an online news website, including topic-based news reading, intuitive tagging, clipping and sharing of interesting news, as well as news filtering or searching based on named entity tags. The evaluation results on the impact of disambiguating tags have shown that the vocabulary can help to significantly improve news searching performance. The preliminary results from our user study have demonstrated that users can benefit from the additional functionalities on the news websites as they are able to retrieve more relevant news, clip and share news with friends and families effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrity of Real Time Kinematic (RTK) positioning solutions relates to the confidential level that can be placed in the information provided by the RTK system. It includes the ability of the RTK system to provide timely valid warnings to users when the system must not be used for the intended operation. For instance, in the controlled traffic farming (CTF) system that controls traffic separates wheel beds and root beds, RTK positioning error causes overlap and increases the amount of soil compaction. The RTK system’s integrity capacity can inform users when the actual positional errors of the RTK solutions have exceeded Horizontal Protection Levels (HPL) within a certain Time-To-Alert (TTA) at a given Integrity Risk (IR). The later is defined as the probability that the system claims its normal operational status while actually being in an abnormal status, e.g., the ambiguities being incorrectly fixed and positional errors having exceeded the HPL. The paper studies the required positioning performance (RPP) of GPS positioning system for PA applications such as a CTF system, according to literature review and survey conducted among a number of farming companies. The HPL and IR are derived from these RPP parameters. A RTK-specific rover autonomous integrity monitoring (RAIM) algorithm is developed to determine the system integrity according to real time outputs, such as residual square sum (RSS), HDOP values. A two-station baseline data set is analyzed to demonstrate the concept of RTK integrity and assess the RTK solution continuity, missed detection probability and false alarm probability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing multilevel inverters is a proper solution to reduce harmonic content of output voltage and electromagnetic interference in high power electronic applications. In this paper, a new pulse width modulation method for multilevel inverters is proposed in which power devices’ on-off switching times have been considered. This method can be surveyed in order to analyse the effect of switching time on harmonic contents of output voltage in high frequency applications when a switching time is not negligible compared to a switching cycle. Fast Fourier transform calculation and analysis of output voltage waveforms and harmonic contents with regard to switching time variation are presented in this paper for a single phase (3, 5)-level inverters used in high voltage and high frequency converters. Mathematical analysis and MATLAB simulation results have been carried out to validate the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.