692 resultados para multifrequency antennas
Resumo:
Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.
Resumo:
This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.
Resumo:
We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure.
Resumo:
Ground plane slot structures have been shown to reduce coupling between cosited antennas. Although some such structures have already been reported, no analytical model exists to describe their behavior and there are no design guidelines. In this work, the behavior of reported ground plane structures is used as a clue to obtain generalizable information about such structures' behavior. The structures' scalability and excitation behavior is investigated. Next a circuit model is derived that describes the interaction of microstrip patch antennas with a ground plane slot structure based on mutual admittances between the ground plane slots and the effective slots at the antennas' radiating edges. The circuit model leads to design guidelines for the ground plane slot structure and an approximate relationship between mutual admittances which must be satisfied in order to isolate the antennas. Finally, we present a novel ground plane slot structure that mitigates some of the disadvantages of earlier designs.
Resumo:
The main topic of this thesis is about the design and prototyping of automotive antennas that allows Vehicle to Everything (V2X) communications, that is the communication between the vehicle and all what else is relevant. In particular 5G will be an enabling technology for these communications. Vehicular connectivity is a mandatory feature in nowadays car. Typical applications are that one related to the infotainment, i.e. radio or mobile telephone, or security ones, i.e. radars. The antennas that support this type of communications can be divided in two frequency range: the sub-6GHz range and the millimeter wave (mmW) range. Also the 5G standard can be divided in this two frequency ranges. In this work different automotive antennas solutions are presented for both the frequency bands. For the sub-6GHz range two different antennas are presented: a tin sheet 5G-sub6 radiating element and a complete 5G-GNSS-V2X shark fin module. For the mmW frequency band, an automotive PCB planar solution is presented. Since these frequencies are a novelty for the automotive market, satellite communications (SatCom) field has been considered. In SatCom applications mmW solutions are a well-established technology. Thus, also mmW antennas solutions for SatCom applications are here presented.
Resumo:
Este trabalho faz uma análise das estimativas de teores de umidade obtidas com o método Ground Penetrating Radar (GPR) comparativamente às determinadas com os métodos Time Domain Reflectometry (TDR) e gravimétrico. Os dados foram obtidos em dois experimentos diferentes: um experimento controlado em laboratório buscando reproduzir um meio homogêneo onde foram obtidas as medidas de umidade com GPR (antenas de 1 GHz) e TDR, e outro experimento de campo onde foram obtidos dados com GPR (antenas de 200 MHz) e de amostras de solos do local. Para a obtenção das estimativas a partir do método GPR foram analisados os eventos relativos à onda de transmissão direta entre as antenas, onda refratada criticamente e onda refletida em interfaces com diferentes propriedades elétricas.O GPR mostrou-se sensível às variações de umidades presentes nos dois experimentos e apresentou boa correlação com os dados obtidos com TDR (REQM de0,007 m³m-3) e das amostras (REQM de 0,039 m³m-3).
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Fluid shifts from intracellular to extracellular water (ICW to ECW) are a feature of sepsis, caused by increased vascular permeability and cell catabolism. Changes in ECW and total body water (TBW) were assessed in a prospective observational study of patients with bacteremia by a bedside technique, and its prognostic impact determined; In 78 hospital patients with fever, the resistance ratio (Rinf/RO) and estimated ECW/TBW ratio from multifrequency bioelectrical impedance analysis, and serum albumin concentration were measured. Rinf/RO and ECW/TBW ratios decreased from day 0 to 2 in patients with significant bacteremia (n = 31), but not in patients with doubtful or negative blood cultures (n = 22 and 25), Increased Rinf/RO at baseline, and further increase of ECW/TBW from day 0 to 2, were associated with lower rate of recovery after 1 week and with higher mortality. Baseline Rinf/RO above the median (0.75) had positive and negative predictive values of 0.31 and 0.95 for death. This prognostic effect was independent of underlying disease and blood culture result in a multivariate model. Hypoalbuminemia at baseline was predictive of outcome, but changes in albumin from day 0 to 2 were unrelated to blood culture results or outcome. In patients with bacteremia,fluid shifts from intracellular to extracellular,vater occur early are rapidly reversible by antibiotic treatment but are associated with adverse prognosis. Bioelectrical impedance deserves further study as a tool for bedside monitoring of patients with bacteremia.
Resumo:
.:Abstract-Objective: Bioelectrical impedance analysis (BIA) is widely used as bedside assessment of body composition. Body cell mass (BCM) and intracellular water (ICW) are clinically important body compartments. Estimates of ICW obtained from BIA by different calculation approaches were compared to a reference method in male HIV-infected patients. Patients: Representative subsample of clinically stable HIV-infected outpatients, consisting of 42 men with a body mass index of 22.4 +/- 3.8 kg/m(2) (range, 13-31 kg/m(2)). Methods: Total body potassium was assessed in a whole body counter, and compared to 50 kHz mono-frequency BIA and multifrequency bioelectrical impedance spectroscopy. Six different prediction equations for ICW from BIA data were applied. Methods were compared by the Bland-Altman method. Results: BIA-derived ICW estimates explained 58% to 73% of the observed variance in ICW (TBK), but limits of confidence were wide (-16.6 to +18.2% for the best method). BIA overestimated low ICW (TBK) and underestimated high ICW (TBK) when normalized for weight or height. Mono- and multifrequency BIA were not different in precision but population-specific equations tended to narrower confidence limits. Conclusion: BIA is an unreliable method to estimate ICW in this population, in contrast to the better established estimation of total body water and extracellular water. Potassium depletion in severe malnutrition may contribute to this finding but a major part of the residual between methods remains unexplained. (C) 2000 Harcourt Publishers Ltd.
Resumo:
The technical reliability (i.e., interinstrument and interoperator reliability) of three SEAC-swept frequency bioimpedance monitors was assessed for both errors of measurement and associated analyses. In addition, intraoperator and intrainstrument variability was evaluated for repeat measures over a 4-hour period. The measured impedance values from a range of resistance-capacitance circuits were accurate to within 3% of theoretical values over a range of 50-800 ohms. Similarly, phase was measured over the range 1 degrees-19 degrees with a maximum deviation of 1.3 degrees from the theoretical value. The extrapolated impedance at zero frequency was equally well determined (+/-3%). However, the accuracy of the extrapolated value at infinite frequency was decreased, particularly at impedances below 50 ohms (approaching the lower limit of the measurement range of the instrument). The interinstrument/operator variation for whole body measurements were recorded on human volunteers with biases of less than +/-1% for measured impedance values and less than 3% for phase. The variation in the extrapolated values of impedance at zero and infinite frequencies included variations due to operator choice of the analysis parameters but was still less than +/-0.5%. (C) 1997 Wiley-Liss, Inc.
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
In this paper, a small transmit array of transistor amplifiers illuminated by a passive array of microstrip patches in the reactive near-field region is investigated as a power-combining structure. The two cases considered are when the transmit array radiates in a free space and when a passive array similar to the one used for illumination collects the radiated power. A comparison of the performance of the proposed structure against the alternative one, which uses a conventional horn antenna as a power-launching/receiving device, is also presented.
Resumo:
This paper is concerned with the design of a Ku-band active transmit-array module of transistor amplifiers excited by either a pyramidal horn or a patch array Optimal distances between the active transmit array and the signal-launching:receiving device, which is either a passive corporate-fed array or a horn, are determined to maximise the power gain at a design frequency: Having established these conditions, the complete structure is investigated in terms of operational bandwidth and near-field and far-field distributions measured at the output side of the transmit array, The experimental results show that the use of a corporate-fed array as an illuminating/receiving device gives higher gain and significantly larger operational bandwidth, An explanation for this behavior is sought.