991 resultados para multi-stemmed trees


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born. A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped. Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together. In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The journalism revolution is upon us. In a world where we are constantly being told that everyone can be a publisher and challenges are emerging from bloggers, Twitterers and podcasters, journalism educators are inevitably reassessing what skills we now need to teach to keep our graduates ahead of the game. QUT this year tackled that question head-on as a curriculum review and program restructure resulted in a greater emphasis on online journalism. The author spent a week in the online newsrooms of each of two of the major players – ABC online news and thecouriermail.com to watch, listen and interview some of the key players. This, in addition to interviews with industry leaders from Fairfax and news.com, lead to the conclusion that while there are some new skills involved in new media much of what the industry is demanding is in fact good old fashioned journalism. Themes of good spelling, grammar, accuracy and writing skills and a nose for news recurred when industry players were asked what it was that they would like to see in new graduates. While speed was cited as one of the big attributes needed in online journalism, the conclusion of many of the players was that the skills of a good down-table sub or a journalist working for wire service were not unlike those most used in online newsrooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drawing on primary data and adjunct material, this article adopts a critical self-reflexive approach to a three-year, Australian Research Council-funded projectthat explored themes around 'employment citizenship'for high school students in Queensland. The article addresses three overlapping areas that reflect some of the central dilemmas and challenges arising through the project- consent in the context of research ethics, questionnaire administration in schools, and focus group research practice. It contributes to the broader methodological literature addressing research with young people by canvassing pragmatic suggestions for future school-based research, and research addressing adolescent employment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The ability to screen blood of early stage operable breast cancer patients for circulating tumour cells is of potential importance for identifying patients at risk of developing distant relapse. We present the results of a study of the efficacy of the immunobead RT-PCR method in identifying patients with circulating tumour cells. Results Immunomagnetic enrichment of circulating tumour cells followed by RT-PCR (immunobead RT-PCR) with a panel of five epithelial specific markers (ELF3, EPHB4, EGFR, MGB1 and TACSTD1) was used to screen for circulating tumour cells in the peripheral blood of 56 breast cancer patients. Twenty patients were positive for two or more RT-PCR markers, including seven patients who were node negative by conventional techniques. Significant increases in the frequency of marker positivity was seen in lymph node positive patients, in patients with high grade tumours and in patients with lymphovascular invasion. A strong trend towards improved disease free survival was seen for marker negative patients although it did not reach significance (p = 0.08). Conclusion Multi-marker immunobead RT-PCR analysis of peripheral blood is a robust assay that is capable of detecting circulating tumour cells in early stage breast cancer patients.