288 resultados para mortalities
Resumo:
The first spawnings were obtained 12 days after ablation with 4 spawners yielding 784,000 eggs and a harvest of 250,000 P SUB-10 fry. Survival of females after 1 month was approximately 30%. Mortalities were mostly due to handling stress during the regular ovarian samplings as well as disease frm the accumulated excess feeds on the bottom of the tank. Male survival could not be recorded because of transfers to other tanks and addition of new stocks. Development seemed to peak 3 weeks after ablation. The average number of eggs per ablated spawner was 120,000. However, many of the partially spawned females were removed from the spawning tanks the following day so that remaining eggs released in the next 2 to 3 days could not be recorded. Estimate of the average number of eggs per ablated spawner is 120,000-150,000 in contrast to 500,000 per wild spawner. However, the low production cost more than compensates for the difference. Fry reared in the Wet Laboratory were used for experiments, mostly on feeding. Therefore, survival at harvest is not to be taken as a reflection of stock quality. Although fewer in number, larvae from ablated prawns are as healthy in terms of vigor in swimming and feeding as those from wild females. Most mortalities are due to inability to molt caused by lower water temperatures and inadequate feeding.
Resumo:
The study was conducted to determine the effects of varying concentrations of ammonia to milkfish fry. Two runs of static 96h bioassays were conducted to determine the median lethal concentration (LC 50) of unionized ammonia (NH3) to milkfish fry. Test concentrations were based on exploratory 24h and 48h bioassays and were made in three replicates. Reagent grade ammonium chloride (NH4Cl) was used to adjust the level of unionized ammonia. The 96h median lethal concentration, determined by the Reed Muench method was calculated at 28.029 ppm NH3 29.69 ppm. Even at high concentrations of unionized ammonia, most of the fry mortality occurred after 48 to 96 hours exposure. Severe gill damage occurs only at concentrations above 20 ppm, especially above the LC 50. The high LC 50 value obtain shows that milkfish fry has great tolerance to ammonia, that even fry with severely-damaged gills can still recover days after it is returned to favorable culture condition. The result suggest that observed mortalities of milkfish fry under culture conditions are not due to ammonia toxicity.
Resumo:
Effects of post-ovulatory and post-stripping retention time and temperature on egg viability rates were studied in kutum (Rutilus frisii kutum). Eggs were retained inside (in vivo storage) or outside the ovarian cavity with ovarian fluid (in vitro storage) at various temperatures. Two experiments were performed: 1) Partial volumes of eggs were stripped and fertilized at 24- hour intervals for 96 hours post-ovulation (HPO) (at 11 °C) and at 12-hour intervals for 72 HPO (at 14 °C), and 2) stored eggs were fertilized after 0, 2, 4, 6, and 8 hours post-stripping (HPS) at temperatures of 4, 10, 12, and 26 °C. In the first experiment, the highest eyeing and hatching rates (76% and 60% at 11 °C; 81% and 71% at 14 °C) and the lowest eyed-egg mortalities (20% at 11 °C; 12% at 14 °C) occurred in the eggs fertilized immediately (0–24 HPO at 11 °C and 0–12 HPO at 14 °C) after ovulation. Egg viability, as shown by successful eyeing and hatching rates, was completely lost by 72–96 HPO at 11 °C, and 60–72 HPO at 14 °C. In the second experiment, the maximum eyeing (87%) and hatching (75%) rates of eggs took place at 0 HPS followed by 8 HPS (> 80% and > 70%, respectively) at 4 °C. As storage temperature increased, egg viability decreased: 80%, 70%, and 50% viable at 8 HPS at 4, 10, and 12 °C, respectively. The eggs stored at 26 °C lost their viability almost completely after 4 HPS. Eyed-egg mortality increased from 13% at 0 HPS to 48.2% at 4 HPS at 26°C. These results demonstrate that egg stripping should take place within 168 °C-hours after ovulation and that complete loss of viability of the eggs occurs by 672°C-hours after ovulation. The in vivo storage method is more effective compared to in vitro storage. Also successful in vitro storage of eggs can be used atleast within 8 hours at temperatures ranging from 4 to 12ºC.
Resumo:
After grass carps Ctenopharyngodon idellus were injected with cortisol, with (CBC) and without (C) a cocoa butter carrier, the effects of both slowly and rapidly acting exogenous cortisol oil their non-specific immune functions were investigated. On the one hand, after injection with CBC, the cortisol concentration and lysozyme activity in fish serum were enhanced and were sustained at high levels for a long period (30 days). The killing activity in the serum declined with time, and phagocytosis of head kidney macrophages diminished significantly (P < 0.05 or P < 0.01). The leukocrit values in the high dose group (31-8 mg cortisol fish(-1)) increased over time, however, with the maximum average being 5.6% at day 30. The spleen mass index in the high dose group was 0.93 x 10(-3) after 30 days, notably lower (P < 0.05) than that in the control group. In addition, a decrease in resistance to Aeronionas hydrophilo infection in cortisol-treated fish was shown, with the final cumulative mortalities being 54.5 and 66.7% in the low and high dose groups, respectively. On the other hand, there was a decrease in both serum cortisol concentration and lysozyme activity of the experimental fish within 2 weeks after injection with C, where plasma bactericidal activities in the high dose group (31-8 mg cortisol fish(-1)) were remarkably lower (P < 0.01) than those in the control group at each sampling, but were increased slightly over time. The results of which were different from those in the CBC trial. Phagocytic activity of head kidney macrophages and spleen mass index decreased significantly (P < 0.05), while there were increases in leukocrit value and cumulative mortality due to A. hydrophila. The results of which were similar to those in the CBC trial. This study indicated that the injection of cortisol depressed the non-specific immune functions of the grass carp and increased its susceptibility to disease. (c) 2005 The Fisheries Society of the British Isles.
Resumo:
1. Baiji were sighted 17 times during three recent simultaneous multi-vessel surveys in the Yangtze River, China (November 4-10, 1997; December 4-9, 1998; October 31-November 5, 1999). There were 11 sightings in 1997 (consisting of 17 animals), five in 1998 (seven animals), and two in 1999 (four animals). It was concluded that 13 individuals Could be considered as a minimum number of the baiji currently in the Yangtze River. 2. An annual rate of population decrease was roughly estimated as 10%. From the body sizes observed, the proportions of old, adult and immature individuals were approximately estimated at 57, 26, and 17% respectively. 3. Baiji showed a significant attraction to confluences and sand bars with large eddies. The present distribution range of the baiji is less than 1400 km in length in the Yangtze main river. Distances between the two nearest groups of baiji appear to be increasing. 4. Two typical sightings are described, in which surfacing and movements of baiji were recorded. Baiji were often found swimming together with finless porpoise. In the surveys they occurred in the same group in 63% of occurrences. Interactions between baiji and finless porpoise are described and discussed. 5. Human activities are the main threats to the baiji. Illegal electrical fishing accounted for 40% of known mortalities during the 1990s. Engineering explosions for maintaining navigation channels have become another main cause of baiji deaths. The last hope of saving the species may be to translocate the remaining baiji into a semi-captive reserve. known as the 'Baiji Semi-natural Reserve'. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.
Resumo:
The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved
Resumo:
用平板画线法从患病栉孔扇贝(Chlamys farreri)体内分离到了一种原核生物(简称QDP)。QDP可以在改进的液体培养基MEM(含2.2%NaCl,5%小牛血清)和脑心浸液(含2.2% NaCl)中生长;菌落在显微镜下(150×)为无色、透明的小点状;革兰氏染色阴性;菌体为圆形或近似圆形。QDP在发育过程中有两种状态,一种为未成熟阶段,直径小于100nm;另一种为成熟阶段,直径变化很大,最小约60nm,最大可达4µm以上。较小的个体有拟核、核糖体和新月状的空泡,未见细胞壁;较大的个体有细胞壁,胞内大部分被空泡充满,未见拟核和核糖体。栉孔扇贝组织超簿切片电镜观查证实QDP的存在。QDP的密度随着生长发育时间的不同而有所变化,繁殖高峰期密度较大。 建立了密度梯度离心结合滤膜过滤分离技术,优化人工培养条件。最适生长温度为23℃,最适生长pH值为7.4,最适生长盐度相当于细胞培养液所需的盐浓度(0.85%NaCl)。 提取的QDP核酸能被RNase A 降解,且没有检测到DNA。以PCR、RT-PCR扩增其16SrRNA基因序列片段,PCR反应没有扩增出扩增子,而RT-PCR则扩增出了16S rRNA基因序列片段,经测定其序列全长度为1430bp,经与GENEBANK中的16S rRNA片段比较分析,与6种不同科的微生物的同源率最高的为95%-95.47%。 采用温度梯度和病原浓度梯度回归感染实验方法,较为系统地研究了QDP的致病性。研究结果表明:QDP对栉孔扇贝有强烈的致病作用,高温(23℃以上)是其致病的必要条件,证实DQP是栉孔扇贝大规模死亡的病原体之一。
Resumo:
Mass mortalities of cultured zhikong scallops (Chlamys farreri) have occurred each summer in most culture areas of northern China since 1996. Among the hypothesized causes are high culture density, infectious disease and genetic inbreeding. To investigate these potential agents, C. farreri were deployed at three densities (low, medium and high) at three sites (Jiaonan, Penglai and Yantai) in the summer of 2000. Scallops were sampled for survival, growth and histopathology before, during and after a mortality episode. Most of the mortality occurred in July and August, during and toward the later part of the spawning season, when water temperature reached 23-26 degrees C. Final cumulative mortalities reached 85% to 90% at all three sites. Scallops in the medium and high densities had higher initial death rates than did those at the low density. High densities also inhibited growth. Ciliates from the genus Trichodina, larvae of various organisms and anomalous secretions were observed in sections of the gill cavity, with highest prevalence during and at the end of the mortality period. Prokaryotic inclusion bodies were found in the soft tissues, but their prevalence was low and apparently without correlation with mortalities. Genetic analysis with random amplified polymorphic DNA markers showed slightly lower heterozygosity in the cultured stocks (0.301) than in the wild stocks (0.331). It is possible that the mortalities are caused by a combination of several factors such as stress associated with reproduction, high temperature, overcrowding and poor circulation in the growout cages, opportunistic invaders or pathogens, and possibly inbreeding. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The nitric oxide synthase (NOS) activity in the haemocytes of shrimps Fenneropenaeus chinensis (Osbeck) and Marsupenaeus japonicus (Bate) was Studied after white spot syndrome virus (WSSV) infection to determine its characteristics in response to virus infection. First, the NOS activity in haemocytes of shrimps was determined by the means of NBT reduction and changes in cell conformation. And the variations of NOS activity in shrimps after challenge with WSSV intramuscularly were evaluated through the analysis Of L-citrulline and total nitrite/nitrate (both as NO derivates) concentrations. The result showed that NOS activity in the haemocytes of F chinensis increased slightly from 0 to 12 h postchallenge, indicated by the variations Of L-Citrulline (from 11.15 +/- 0.10 to 12.08 +/- 0.64 mu M) and total nitrite/nitrate concentrations (from 10.45 +/- 0.65 to 12.67 +/- 0.52 mu M). Then it decreased sharply till the end of the experiment (84 h postchallenge), the concentrations Of L-Citrulline and total nitrite/nitrate at 84 It were 1.58 +/- 0.24 and 2.69 +/- 0.70 mu M, respectively. The LPS-stimulated NOS activity kept constant during the experiment. However, in M. japonicus, the NOS activity kept increasing during the first 72 It postchallenge, the concentrations Of L-Citrulline and total nitrite/nitrate increased from 7.82 +/- 0.77 at 0 h to 10.79 +/- 0.50 mu M at 72 h, and from 8.98 +/- 0.43 at 0 h to 11.20 +/- 0.37 mu M at 72 h, respectively. Then it decreased till the end of the experiment (216 h postchallenge), and the concentrations of L-Citrulline and total nitrite/nitrate at 216 h were 5.66 +/- 0.27 and 4.68 +/- 0.16 mu M, respectively. More importantly, an apparent increase of I-PS-stimulated NOS activity was observed in M japonicus at 48 h postchallenge, which was about 4 times higher than that in the control group of health shrimps. In correspondence with the difference of NOS activity between the two species of shrimps, the Cumulative mortalities of the shrimps were also different. All shrimps of F. chinensis in the mortality experiment died in 66 h, much more quickly than M. japonicus, Whose accumulative mortality reached 100% after 240 h. Data here reported let us hypothesize that NOS activity in the haemocytes of shrimps F chinensis and M. japonicus responses to WSSV infection differently, and this might be one of the reasons for the different susceptibility of F chinensis and M. japonicus to WSSV infection. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.
Resumo:
Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL�1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.
Resumo:
Newly hatched juvenile Buccinum undatum can be reared under laboratory conditions. Good was growth is achieved when juveniles were fed on combined diets (blue mussel, cod, and fish pellets). Juveniles reached shell heights of 33.0 ± 4.2 mm, 26.9 ± 3.8 ± mm, 23.2 ± 2.2 mm, and 20.1 ± 1.6 mm, after 14 months of fedding on a combined diet, blue mussel, cod, and fish pellets, respectively under ambient sea temperature and salinity. After 14 months juveniles fed blue mussel had the highest survival rates (67%) followed by those fed a combination of all other experimental diets (61%), cod waste (53%) and fish-feed pellets (46%). High mortalities were recorded in most treatments during the summer months between June and September. This species appears to have an aquaculture potential, as juveniles readily feed on artificial diets at an early age, show high survival rates and could potentially reach market size in 2 years or less. The major constraint in realising this potential at present, is the relatively low value of the species; if market values increased as a result of serious depletion of natural populations, hatchery production of juveniles for intensive aquaculture or restocking could become economically viable.
Resumo:
Aggregations or blooms of jellyfish are increasingly problematic for the aquaculture industry. Jellyfishassociated mass mortalities of sea-caged fish are most often caused by swarms of oceanic species like Pelagia noctiluca. These relatively large jellyfish get carried by tides and currents onto fish cages, causing them to break up into pathogenic nematocyst-containing pieces that are capable of passing through the mesh of the cages. The main effect on fish is gill damage leading to respiratory distress, but the lesions may also be compounded by bacterial infection, Tenacibaculum maritimum being one of the pathogens involved. In our previous study, we highlighted the ability of the jellyfish Phialella quadrata to carry this important pathogen. However, since these small jellyfish were collected around sea-cages of infected salmon, it was not possible to determine if the jellyfish or the fish themselves were the original source of the bacteria. Results of the current study demonstrate that these filamentous bacteria are present on the mouth of P. noctiluca that had no previous contact with farmed fish. These new results highlight the fact that some Cnidarian species harbour T. maritimum and suggest that jellyfishmight be a natural host for these bacteria whose environmental reservoir has not yet been determined.