956 resultados para momentum dependent interaction
Resumo:
The main factors affecting solid-phase Si-metal interactions are reported in this work. The influence of the orientation of the Si substrates and the presence of impurities in metal films and at the Si-metal interface on the formation of nickel and chromium silicides have been demonstrated. We have observed that the formation and kinetic rate of growth of nickel silicides is strongly dependent on the orientation and crystallinity of the Si substrates; a fact which, up to date, has never been seriously investigated in silicide formation. Impurity contaminations in the Cr film and at the Si-Cr interface are the most dominant influencing factors in the formation and kinetic rate of growth of CrSi2. The potentiality and use of silicides as a diffusion barrier in metallization on silicon devices were also investigated.
Two phases, Ni2Si and NiSi, form simultaneously in two distinct sublayers in the reaction of Ni with amorphous Si, while only the former phase was observed on other substrates. On (111) oriented Si substrates the growth rate is about 2 to 3 times less than that on <100> or polycrystalline Si. Transmission electron micrographs establish-·that silicide layers grown on different substrates have different microcrystalline structures. The concept of grain-boundary diffusion is speculated to be an important factor in silicide formation.
The composition and kinetic rate of CrSi2 formation are not influenced by the underlying Si substrate. While the orientation of the Si substrate does not affect the formation of CrSi2 , the purity of the Cr film and the state of Si-Cr interface become the predominant factors in the reaction process. With an interposed layer of Pd2Si between the Cr film and the Si substrate, CrSi2 starts to form at a much lower temperature (400°C) relative to the Si-Cr system. However, the growth rate of CrSi2 is observed to be independent of the thickness of the Pd2Si layer. For both Si-Cr and Si-Pd2Si-Cr samples, the growth rate is linear with time with an activation energy of 1.7 ± 0.1 ev.
A tracer technique using radioactive 31Si (T1/2 = 2.26 h) was used to study the formation of CrSi2 on Pd2Si. It is established from this experiment that the growth of CrSi2 takes place partly by transport of Si directly from the Si substrate and partly by breaking Pd2Si bonds, making free Si atoms available for the growth process.
The role of CrSi2 in Pd-Al metallization on Si was studied. It is established that a thin CrSi2 layer can be used as a diffusion barrier to prevent Al from interacting with Pd2Si in the Pd-Al metallization on Si.
As a generalization of what has been observed for polycrystalline-Si-Al interaction, the reactions between polycrystalline Si (poly Si) and other metals were studied. The metals investigated include Ni, Cr, Pd, Ag and Au. For Ni, Cr and Pd, annealing results in silicide formation, at temperatures similar to those observed on single crystal Si substrates. For Al, Ag and Au, which form simple eutectics with Si annealing results in erosion of the poly Si layer and growth of Si crystallites in the metal films.
Backscattering spectrometry with 2.0 and 2.3 MeV 4He ions was the main analytical tool used in all our investigations. Other experimental techniques include the Read camera glancing angle x-ray diffraction, scanning electron, optical and transmission electron microscopy. Details of these analytical techniques are given in Chapter II.
Resumo:
The single ionization of an He atom by intense linearly polarized laser field in the tunneling regime is studied by S- matrix theory. When only the first term of the expansion of the S matrix is considered and time, spatial distribution, and fluctuation of the laser pulse are taken into account, the obtained momentum distribution in the polarization direction of laser field is consistent with the semiclassical calculation, which only considers tunneling and the interaction between the free electron and external field. When the second term, which includes the interaction between the core and the free electron, is considered, the momentum distribution shows a complex multipeak structure with the central minimum and the positions of some peaks are independent of the intensity in some intensity regime, which is consistent with the recent experimental result. Based on our analysis, we found that the structures observed in the momentum distribution of an He atom are attributed to the " soft" collision of the tunneled electron with the core.
Resumo:
In the first section of this thesis, two-dimensional properties of the human eye movement control system were studied. The vertical - horizontal interaction was investigated by using a two-dimensional target motion consisting of a sinusoid in one of the directions vertical or horizontal, and low-pass filtered Gaussian random motion of variable bandwidth (and hence information content) in the orthogonal direction. It was found that the random motion reduced the efficiency of the sinusoidal tracking. However, the sinusoidal tracking was only slightly dependent on the bandwidth of the random motion. Thus the system should be thought of as consisting of two independent channels with a small amount of mutual cross-talk.
These target motions were then rotated to discover whether or not the system is capable of recognizing the two-component nature of the target motion. That is, the sinusoid was presented along an oblique line (neither vertical nor horizontal) with the random motion orthogonal to it. The system did not simply track the vertical and horizontal components of motion, but rotated its frame of reference so that its two tracking channels coincided with the directions of the two target motion components. This recognition occurred even when the two orthogonal motions were both random, but with different bandwidths.
In the second section, time delays, prediction and power spectra were examined. Time delays were calculated in response to various periodic signals, various bandwidths of narrow-band Gaussian random motions and sinusoids. It was demonstrated that prediction occurred only when the target motion was periodic, and only if the harmonic content was such that the signal was sufficiently narrow-band. It appears as if general periodic motions are split into predictive and non-predictive components.
For unpredictable motions, the relationship between the time delay and the average speed of the retinal image was linear. Based on this I proposed a model explaining the time delays for both random and periodic motions. My experiments did not prove that the system is sampled data, or that it is continuous. However, the model can be interpreted as representative of a sample data system whose sample interval is a function of the target motion.
It was shown that increasing the bandwidth of the low-pass filtered Gaussian random motion resulted in an increase of the eye movement bandwidth. Some properties of the eyeball-muscle dynamics and the extraocular muscle "active state tension" were derived.
Resumo:
En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.
Resumo:
Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.
Resumo:
The study of pair-wise interactions between swimming microorganisms is fundamental to the understanding of the rheological and transport properties of semi-dilute suspensions. In this paper, the hydrodynamic interaction of two ciliated microorganisms is investigated numerically using a boundary-element method, and the microorganisms are modeled as spherical squirmers that swim by time-dependent surface deformations. The results show that the inclusion of the unsteady terms in the ciliary propulsion model has a large impact on the trajectories of the interacting cells, and causes a significant change in scattering angles with potential important consequences on the diffusion properties of semi-dilute suspensions. Furthermore, the analysis of the shear stress acting on the surface of the microorganisms revealed that the duration and the intensity of the near-field interaction are significantly modified by the presence of unsteadiness. This observation may account for the hydrodynamic nature of randomness in some biological reactions, and supersedes the distinction between intrinsic randomness and hydrodynamic interactions, adding a further element to the understanding and modeling of interacting microorganisms.
Resumo:
With recent developments in carbon-based electronics, it is imperative to understand the interplay between the morphology and electronic structure in graphene and graphite. We demonstrate controlled and repeatable vertical displacement of the top graphene layer from the substrate mediated by the scanning tunneling microscopy (STM) tip-sample interaction, manifested at the atomic level as well as over superlattices spanning several tens of nanometers. Besides the full-displacement, we observed the first half-displacement of the surface graphene layer, confirming that a reduced coupling rather than a change in lateral layer stacking is responsible for the triangular/honeycomb atomic lattice transition phenomenon, clearing the controversy surrounding it. Furthermore, an atomic scale mechanical stress at a grain boundary in graphite, resulting in the localization of states near the Fermi energy, is revealed through voltage-dependent imaging. A method of producing graphene nanoribbons based on the manipulation capabilities of the STM is also implemented.
Resumo:
Chronic exposure to morphine can induce drug addiction and neural injury, but the exact mechanism is not fully understood. Here we show that morphine induces autophagy in neuroblastoma SH-SY5Y cells and in the rat hippocampus. Pharmacological approach shows that this effect appears to be mediated by PTX-sensitive G protein-coupled receptors signaling cascade. Morphine increases Beclin 1 expression and reduces the interaction between Beclin 1 and Bcl-2, thus releasing Beclin 1 for its pro-autophagic activity. Bcl-2 overexpression inhibits morphine-induced autophagy, whereas knockdown of Beclin 1 or knockout of ATG5 prevents morphine-induced autophagy. In addition, chronic treatment with morphine induces cell death, which is increased by autophagy inhibition through Beclin 1 RNAi. Our data are the first to reveal that Beclin 1 and ATG5 play key roles in morphine-induced autophagy, which may contribute to morphine-induced neuronal injury.
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
Discrete particle simulations of column of an aggregate of identical particles impacting a rigid, fixed target and a rigid, movable target are presented with the aim to understand the interaction of an aggregate of particles upon a structure. In most cases the column of particles is constrained against lateral expansion. The pressure exerted by the particles upon the fixed target (and the momentum transferred) is independent of the co-efficient of restitution and friction co-efficient between the particles but are strongly dependent upon the relative density of the particles in the column. There is a mild dependence on the contact stiffness between the particles which controls the elastic deformation of the densified aggregate of particles. In contrast, the momentum transfer to a movable target is strongly sensitive to the mass ratio of column to target. The impact event can be viewed as an inelastic collision between the sand column and the target with an effective co-efficient of restitution between 0 and 0.35 depending upon the relative density of the column. We present a foam analogy where impact of the aggregate of particles can be modelled by the impact of an equivalent foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally and yet give predictions to within 5% of the full discrete particle calculations. They also suggest that "model" materials can be used to simulate the loading by an aggregate of particles within a laboratory setting. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The performance of a transonic fan operating within nonuniform inlet flow remains a key concern for the design and operability of a turbofan engine. This paper applies computational methods to improve the understanding of the interaction between a transonic fan and an inlet total pressure distortion. The test case studied is the NASA rotor 67 stage operating with a total pressure distortion covering a 120-deg sector of the inlet flow field. Full-annulus, unsteady, three-dimensional CFD has been used to simulate the test rig installation and the full fan assembly operating with inlet distortion. Novel post-processing methods have been applied to extract the fan performance and features of the interaction between the fan and the nonuniform inflow. The results of the unsteady computations agree well with the measurement data. The local operating condition of the fan at different positions around the annulus has been tracked and analyzed, and this is shown to be highly dependent on the swirl and mass flow redistribution that the rotor induces ahead of it due to the incoming distortion. The upstream flow effects lead to a variation in work input that determines the distortion pattern seen downstream of the fan stage. In addition, the unsteady computations also reveal more complex flow features downstream of the fan stage, which arise due to the three dimensionality of the flow and unsteadiness. © 2012 American Society of Mechanical Engineers.
Resumo:
The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.