945 resultados para mitochondrial cytochrome b
Resumo:
Leishmania spp are distributed throughout the world and different species are associated with varying degrees of disease severity. However, leishmaniasis is thought to be confined to areas of the world where its insect vectors, sandflies, are present. Phlebotomine sandflies obtain blood meals from a variety of wild and domestic animals and sometimes from humans. These vectors transmit Leishmania spp, the aetiological agent of leishmaniasis. Identification of sandfly blood meals has generally been performed using serological methods, although a few studies have used molecular procedures in artificially fed insects. In this study, cytochrome b gene (cytB) polymerase chain reaction (PCR) was performed in DNA samples isolated from 38 engorged Psychodopygus lloydi and the expected 359 bp fragment was identified from all of the samples. The amplified product was digested using restriction enzymes and analysed for restriction fragment length polymorphisms (RFLPs). We identified food sources for 23 females; 34.8% yielded a primate-specific banding profile and 26.1% and 39.1% showed banding patterns specific to birds or mixed restriction profiles (rodent/marsupial, human/bird, rodent/marsupial/human), respectively. The food sources of 15 flies could not be identified. Two female P. lloydi were determined to be infected by Leishmania using internal transcribed spacer 1 and heat shock protein 70 kDa PCR-RFLP. The two female sandflies, both of which fed on rodents/marsupials, were further characterised as infected with Leishmania (Viannia) braziliensis. These results constitute an important step towards applying methodologies based on cytB amplification as a tool for identifying the food sources of female sandflies.
Resumo:
The role played by different mammal species in the maintenance of Trypanosoma cruzi is not constant and varies in time and place. This study aimed to characterise the importance of domestic, wild and peridomestic hosts in the transmission of T. cruzi in Tauá, state of Ceará, Caatinga area, Brazil, with an emphasis on those environments colonised by Triatoma brasiliensis. Direct parasitological examinations were performed on insects and mammals, serologic tests were performed on household and outdoor mammals and multiplex polymerase chain reaction was used on wild mammals. Cytochrome b was used as a food source for wild insects. The serum prevalence in dogs was 38% (20/53), while in pigs it was 6% (2/34). The percentages of the most abundantly infected wild animals were as follows: Thrichomys laurentius 74% (83/112) and Kerodon rupestris 10% (11/112). Of the 749 triatomines collected in the household research, 49.3% (369/749) were positive for T. brasiliensis, while 6.8% were infected with T. cruzi (25/369). In captured animals, T. brasiliensis shares a natural environment with T. laurentius, K. rupestris, Didelphis albiventris, Monodelphis domestica, Galea spixii, Wiedomys pyrrhorhinos, Conepatus semistriatus and Mus musculus. In animals identified via their food source, T. brasiliensis shares a natural environment with G. spixii, K. rupestris, Capra hircus, Gallus gallus, Tropidurus oreadicus and Tupinambis merianae. The high prevalence of T. cruzi in household and peridomiciliar animals reinforces the narrow relationship between the enzootic cycle and humans in environments with T. brasiliensis and characterises it as ubiquitous.
Resumo:
The marsh frog (Pelophylax ridibundus) has been introduced in many places of Central and Western Europe due to commercial trades with Eastern Europe, and is rapidly replacing the native pool frog (P. lessonae). A large number of Pelophylax species are distributed in Eastern Europe and the strong phenotypic similarity between these species is rendering their identification hazardous. Consequently, alien populations of Pelophylax might not strictly be composed of P. ridibundus as previously suspected. In the present study, we analyzed the cytochrome b and NADH dehydrogenase subunit 3 genes of introduced and native Pelophylax from Switzerland (299 individuals), in order to properly identify the source populations of the invaders and the genetic status of the native species. Our study highlighted the occurrence of several genetic lineages of invasive frogs in western Switzerland. Unexpectedly, we also showed that several populations of the native pool frog (P. lessonae) cluster with the Italian pool frog P. bergeri from central Italy (considered by some authors as a subspecies of P. lessonae) Hence, these populations are probably also the result of introductions, meaning that the number of native P. lessonae populations is less important than expected in Switzerland. These findings have important implications concerning the conservation of the endemic pool frog populations, as the presence of multiple alien species could strongly affect their long-term subsistence.
Resumo:
Previous morphological and cytological analyses have suggested that the arctic shrew (Sorex arcticus) as currently recognized may be two distinct species. Specifically, those studies demonstrated considerable differentiation between the putative subspecies S. a. maritimensis and one or both of the other two subspecies, S. a. arcticus and S. a. laricorum. Phylogenetic analysis of 546 base pairs of cytochrome b sequence data from 10 arctic shrews from across Canada indicates that maritimensis is the sister-group to arcticus + laricorum. Furthermore, there is considerable genetic divergence between maritimensis and the other two putative subspecies (similar to8-9%; Kimura's two-parameter distance). Given that maritimensis and arcticus + laricorum appear to be reciprocally monophyletic clades with considerable genetic divergence (i.e., greater than that between other recognized pairs of sister-species within the S. araneus-arcticus group), we propose that S. maritimensis be recognized as a distinct species. The proportion of third-position transversion substitutions between S. arcticus and S. maritimensis suggests that these two species shared a common ancestor approximately 2.4 million years ago.
Resumo:
Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.
Resumo:
279 paires de bases du gène du Cytochrome b ont été séquencés pour 16 individus appartenant aux différentes formes chromosomiques de S. araneaus des Alpes occidentales, à S. coronatus et à S. granarius, laquelle a conservé un caryotype primitif. Trois clones principaux ont été identifiés: CC correspond à S. coronatus, CV caractérise la rae chromosomique Valais de S. araneaus, à l'exception des individus capturés aux Houches près de Chamonix, et CA est commun à tous les autres A. araneaus analysés. S. granarius ne montre que de très faibles différences avec le groupe CA, ce qui est en contradiction avec les données de la caryologie. Le fait que le clone CA soit caractéristique d'individus de la race Valais aux Houches, alors qu'une correspondance claire entre race chromosomique et clone de mtDNA est relevée dans les zones de contact entre la race Vaud (clone CA) et la race Valais (clone CB), suggère que les contact entre la race Vaud (clone CA et la race Valais (clone CB); suggère que les chromosomes Valais ont pénétré les populations Acrocentriques par introgression, tandis qu'au Haslital, la race Valais a progressé en repoussant la race Vaud sans qu'il y ait eu échange génétique
Resumo:
In terrestrial snakes, many cases of intraspecific shifts in dietary habits as a function of predator sex and body size are driven by gape-limitation - and hence, are most common in species that feed on relatively large prey, and exhibit a wide body-size range. Our data on seasnakes reveal an alternative mechanism for intraspecific niche partitioning, based on sex-specific seasonal anorexia induced by reproductive activities. Turtle-headed seasnakes (Emydocephalus annulatus) on coral reefs in the New Caledonian Lagoon feed entirely on the eggs of demersal-spawning fishes. DNA sequence data (cytochrome b gene) on eggs that we palpated from stomachs of 37 snakes showed that despite this ontogenetic-stage specialization, the prey come from a taxonomically diverse array of species including damselfish (41% of samples, at least 5 species), blennies (41%, 4 species) and gobies (19%, 5 species). The composition of snake diets shifted seasonally (with damselfish dominating in winter but not summer), presumably reflecting seasonality of fish reproduction. That seasonal shift affects male and female snakes differently, because reproduction is incompatible with foraging. Adult female seasnakes ceased feeding when they became heavily distended with developing embryos in late summer, and males ceased feeding while they were mate-searching in winter. The sex divergence in foraging habits may be amplified by sexual size dimorphism; females grow larger than males, and larger snakes (of both sexes) feed more on damselfish (which often lay their eggs in exposed sites) than on blennies and gobies (whose eggs are hidden within narrow crevices). Specific features of reproductive biology of coral-reef fish (seasonality and nest type) have generated intraspecific niche partitioning in these seasnakes, by mechanisms different from those that apply to terrestrial snakes.
Resumo:
We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94-205 kya in the Mediterranean, and 31-67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.
Resumo:
Background: Models of the maintenance of sex predict that one reproductive strategy, sexual or parthenogenetic, should outcompete the other. Distribution patterns may reflect the outcome of this competition as well as the effect of chance and historical events. We review the distribution data of sexual and parthenogenetic biotypes of the planarian Schmidtea polychroa. Results: S. polychroa lives in allopatry or sympatry across Europe except for Central and North-Western Europe, where sexual individuals have never been reported. A phylogenetic relationship between 36 populations based on a 385 bp fragment of the mitochondrial cytochrome oxidase I gene revealed that haplotypes were often similar over large geographic distances. In North Italian lakes, however, diversity was extreme, with sequence differences of up to 5% within the same lake in both sexuals and parthenogens. Mixed populations showed "endemic" parthenogenetic lineages that presumably originated from coexisting sexuals, and distantly related ones that probably result from colonization by parthenogens independent from sexuals. Conclusions: Parthenogens originated repeatedly from sexuals, mainly in Italy, but the same may apply to other Mediterranean regions (Spain, Greece). The degree of divergence between populations suggests that S. polychroa survived the ice ages in separate ice-free areas in Central, Eastern and Southern Europe and re-colonised Europe after the retreat of the major glaciers. Combining these results with those based on nuclear markers, the data suggest that repeated hybridisation between sexuals and parthenogenetic lineages in mixed populations maintains high levels of genetic diversity in parthenogens. This can explain why parthenogens persist in populations that were originally sexual. Exclusive parthenogenesis in central and western populations suggests better colonisation capacity, possibly because of inbreeding costs as well
Resumo:
Recent reports showing a decrease in sperm count in men have brought new concerns about male infertility. Animal models have been widely used to provide some relevant information about the human male gamete, and extrapolations are made to men and to the clinical context. The present study assesses one of the methods used for separation of germ cells of the adult rat testis, namely centrifugal elutriation followed by density gradients (Percoll®). This method was chosen since it presents the best results for cell purity in separating germ cells from the rat testis. A comparison between continuous and discontinuous Percoll® gradients was performed in order to identify the best type of gradient to separate the cells. Maximal cell purity was obtained for spermatocytes (81 ± 8.2%, mean ± SEM) and spermatids (84 ± 2.6%) using centrifugal elutriation followed by continuous Percoll® gradients. A significant difference in purity was observed between elongating spermatids harvested from continuous Percoll® gradients and from discontinuous gradients. Molecular analysis was used to assess cell contamination by employing specific probes, namely transition protein 2 (TP2), mitochondrial cytochrome C oxidase II (COX II), and sulfated glycoprotein 1 (SGP1). Molecular analysis of the samples demonstrated that morphological criteria are efficient in characterizing the main composition of the cell suspension, but are not reliable for identifying minimal contamination from other cells. Reliable cell purity data should be established using molecular analysis
Resumo:
From 1997 onward, the strobilurin fungicide azoxystrobin was widely used in the main banana-production zone in Costa Rica against Mycosphaerella fijiensis var. difformis causing black Sigatoka of banana. By 2000, isolates of M. fijiensis with resistance to the quinolene oxidase inhibitor fungicides were common on some farms in the area. The cause was a single point mutation from glycine to alanine in the fungal target protein, cytochrome b gene. An amplification refractory mutation system Scorpion quantitative polymerase chain reaction assay was developed and used to determine the frequency of G 143A allele in samples of M. fijiensis. Two hierarchical surveys of spatial variability, in 2001 and 2002,found no significant variation in frequency on spatial scales <10 in. This allowed the frequency of G143A alleles on a farm to be estimated efficiently by averaging single samples taken at two fixed locations. The frequency of G 143A allele in bulk samples from I I farms throughout Costa Rica was determined at 2-month intervals. There was no direct relationship between the number of spray applications and the frequency of G143A on individual farms. Instead, the frequency converged toward regional averages, presumably due to the large-scale mixing of ascospores dispersed by wind. Using trap plants in an area remote from the main producing area, immigration of resistant ascospores was detected as far as 6 km away both with and against the prevailing wind.
Resumo:
We have developed a novel Hill-climbing genetic algorithm (GA) for simulation of protein folding. The program (written in C) builds a set of Cartesian points to represent an unfolded polypeptide's backbone. The dihedral angles determining the chain's configuration are stored in an array of chromosome structures that is copied and then mutated. The fitness of the mutated chain's configuration is determined by its radius of gyration. A four-helix bundle was used to optimise simulation conditions, and the program was compared with other, larger, genetic algorithms on a variety of structures. The program ran 50% faster than other GA programs. Overall, tests on 100 non-redundant structures gave comparable results to other genetic algorithms, with the Hill-climbing program running from between 20 and 50% faster. Examples including crambin, cytochrome c, cytochrome B and hemerythrin gave good secondary structure fits with overall alpha carbon atom rms deviations of between 5 and 5.6 Angstrom with an optimised hydrophobic term in the fitness function. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.
Resumo:
Anopheles albertoi Unti and Anopheles arthuri Unti are revived from the synonymy with Anopheles strodei Root, and a distinct morphological form (designated in this study as Anopheles CP Form) from the Strodei Complex of Anopheles (Nyssorhynchus) is characterized. The male genitalia of An. arthuri and An. albertoi are described and illustrated for the first time. An. strodei, An. arthuri, and An. albertoi were first distinguished based on scanning electron microphotos of the eggs, and then each egg type was associated with diagnostic characters of the male genitalia. Identification of Anopheles CP Form was based on morphological characters of the male genitalia, characterized and illustrated in this study. Molecular phylogenetic analysis was most clear when an outgroup was not included, in which case using the nuclear white gene, or the white gene in combination with the mitochondrial cytochrome c oxidase subunit I (COI) gene, clearly separated these four taxa. When Anopheles quadrimaculatus Say and Anopheles stephensi Liston were included as an outgroup, combined white and COI data resolved An. strodei and An. albertoi, whereas An. arthuri was not well resolved. The single sequence of Anopheles CP Form was recovered well separated from other groups in all analyses.
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.