991 resultados para migratory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental conditions influence the breeding and migratory patterns of many avian species and may have particularly dramatic effects on long-distance migrants that breed at northern latitudes. Environment, however, is only one of the ecological variables affecting avian phenology, and recent work shows that migration tactics may be strongly affected by changes in predator populations. We used long-term data from 1978 to 2000 to examine the interactions between snowmelt in western Alaska in relation to the breeding or migration phenologies of small shorebirds and their raptor predators. Although the sandpipers' time of arrival at Alaskan breeding sites corresponded with mean snowmelt, late snowmelts did delay breeding. These delays, however, did not persist to southward migration through British Columbia, likely due to the birds' ability to compensate for variance in the length of the breeding season. Raptor phenology at an early stopover site in British Columbia was strongly related to snowmelt, so that in years of early snowmelt falcons appeared earlier during the sandpipers' southbound migration. These differential effects indicate that earlier snowmelt due to climate change may alter the ecological dynamics of the predator-prey system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1) rate of body-mass change; (2) foraging rate; (3) recapture rate; (4) density; (5) flock size; (6) age and sex ratios; and (7) body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species’ ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is therefore imperative prior to defining the conservation value of newly identified stopover regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful conservation of migratory birds demands we understand how habitat factors on the breeding grounds influences breeding success. Multiple factors are known to directly influence breeding success in territorial songbirds. For example, greater food availability and fewer predators can have direct effects on breeding success. However, many of these same habitat factors can also result in higher conspecific density that may ultimately reduce breeding success through density dependence. In this case, there is a negative indirect effect of habitat on breeding success through its effects on conspecific density and territory size. Therefore, a key uncertainty facing land managers is whether important habitat attributes directly influence breeding success or indirectly influence breeding success through territory size. We used radio-telemetry, point-counts, vegetation sampling, predator observations, and insect sampling over two years to provide data on habitat selection of a steeply declining songbird species, the Canada Warbler (Cardellina canadensis). These data were then applied in a hierarchical path modeling framework and an AIC model selection approach to determine the habitat attributes that best predict breeding success. Canada Warblers had smaller territories in areas with high shrub cover, in the presence of red squirrels (Tamiasciurus hudsonicus), at shoreline sites relative to forest-interior sites and as conspecific density increased. Breeding success was lower for birds with smaller territories, which suggests competition for limited food resources, but there was no direct evidence that food availability influenced territory size or breeding success. The negative relationship between shrub cover and territory size in our study may arise because these specific habitat conditions are spatially heterogeneous, whereby individuals pack into patches of preferred breeding habitat scattered throughout the landscape, resulting in reduced territory size and an associated reduction in resource availability per territory. Our results therefore highlight the importance of considering direct and indirect effects for Canada warblers; efforts to increase the amount of breeding habitat may ultimately result in lower breeding success if habitat availability is limited and negative density dependent effects occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.

The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.

I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.

I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.

In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amongst migratory species, it is common to find individuals from different populations or geographical origins sharing staging or wintering areas. Given their differing life histories, ecological theory would predict that the different groups of individuals should exhibit some level of niche segregation. This has rarely been investigated because of the difficulty in assigning migrating individuals to breeding areas. Here, we start by documenting a broad geographical gradient of hydrogen isotopes (δ (2)H) in robin Erithacus rubecula feathers across Europe. We then use δ (2)H, as well as wing-tip shape, as surrogates for broad migratory origin of birds wintering in Iberia, to investigate the ecological segregation of populations. Wintering robins of different sexes, ages and body sizes are known to segregate between habitats in Iberia. This has been attributed to the despotic exclusion of inferior competitors from the best patches by dominant individuals. We find no segregation between habitats in relation to δ (2)H in feathers, or to wing-tip shape, which suggests that no major asymmetries in competitive ability exist between migrant robins of different origins. Trophic level (inferred from nitrogen isotopes in blood) correlated both with δ (2)H in feathers and with wing-tip shape, showing that individuals from different geographic origins display a degree of ecological segregation in shared winter quarters. Isotopic mixing models indicate that wintering birds originating from more northerly populations consume more invertebrates. Our multi-scale study suggests that trophic-niche segregation may result from specializations (arising in the population-specific breeding areas) that are transported by the migrants into the shared wintering grounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the ecology of migratory birds during the non-breeding season is necessary for ensuring their conservation. Using satellite telemetry data we describe winter ranging behaviour and movements of pallid harriers Circus macrourus that bred in Kazakhstan. We developed an ecological niche model for the species in Africa, to identify the most suitable wintering areas for pallid harriers and the importance of habitat in determining the location of those areas. We also assessed how well represented suitable areas are in the network of protected areas. Individual harriers showed relatively high fidelity to wintering areas but with potential for interannual changes. The ecological niche model highlighted the importance of open habitats with natural vegetation. Most suitable areas for the species were located in eastern Africa. Suitable areas had a patchy distribution but were relatively well included in the network of protected areas. The preferential use of habitats with natural vegetation by wintering pallid harriers and the patchiness of the most suitable areas highlight the harrier's vulnerability to land-use changes and the associated loss of natural vegetation in Africa. Conservation of harriers could be enhanced by preserving natural grasslands within protected areas and improving habitat management in the human-influenced portions of the species’ core wintering areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A espécie Prochilodus lineatus é de grande importância comercial na região dos rios Grande, Pardo e Mogi-Guaçu e tem como característica a formação de grandes cardumes, apta a desenvolver amplos deslocamentos migratórios. O presente trabalho objetivou avaliar, por meio das características morfométricas e etária, se os curimbatás (P. lineatus) dos diferentes estoques migradores e residentes constituem uma única população, havendo interação entre as sub-populações no período de piracema (migração reprodutiva). Utilizou-se um delineamento inteiramente casualizado em esquema fatorial 4 x 2, com quatro tipos de estoques (um residente e três migradores) e dois sexos (macho e fêmea) com trinta repetições, considerando cada peixe como unidade experimental. Foi observada variação de 80,19% para o primeiro componente principal e 8,09% do segundo componente principal fornecida pelas dez variáveis morfométricas dos estoques residentes e migradores. O estoque residente correspondeu aos maiores valores para todas as variáveis morfométricas. Houve sobreposição dos escores individuais das mesmas características entre os estoques migradores. Observou-se predominância de machos entre os estoques residentes e migrador I e II. As semelhanças morfométricas verificadas entre os estoques migradores indicam tratar-se de uma única população, com pequenas variações interpopulacional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVEctives of this descriptive comparative study were to (1) review data obtained from the World Health Organisation Statistical Information System (WHOSIS) database relating to the prevalence of risk factors for coronary heart disease (CHD) among Indians and Australians and (2) compare these data with published epidemiological studies of CHD riskfactors in adult migrant Asian Indians to provide a comprehensive and comparable assessment of risk factors relating to CHD and the mortality attributable to these risk factors. Design: ThDESIGNdy was undertaken using a database search and integrative review methodology. Data were obtained for comparison of CHD risk factors between Indians and Australians using the WHOSIS database. For the integrative review the MEDLINE, CINAHL, EMBASE, and Cochrane databases were searched using the keywords 'Migrants', 'Asian Indian', 'India', 'Migration', 'Immigration', 'Risk factors', and coronary heart disease. Two reviewers independently assessed the eligibility of the studies for inclusion in the review, the methodological quality and extracted details of eligible studies. Results from the integrative review on CHD risk factors in Asian Indians are presented in a narrative format, along with results from the WHOSIS database. Results: TRESULTSadjusted mortality for CHD was four times higher in migrant Asian Indians when compared to both the native population of the host country and migrants from other countries. Similarly when compared to migrants from other countries migrant Asian Indians had the highest prevalence of overweight individuals. Prevalence rates for hypercholesterolemia were up to 18.5 % among mgrant Asian Indians and migrant Asian Indian women had a higher prevalence of hypertriglyceridaemia compared to Caucasian females. Migrant Asian Indians also had a higher incidence of hypertension and upto 71 % of migrnt Asian Indian men did not meet current guidelines for participation in physical activity. Ethnic-specific prevalence of diabetes ranged from 6-7% among the normal weight to 19-33% among the obese migrant Asian Indians compared with non-Hispanic whites. ConclusionCONCLUSIONAsian Indians have an increased risk of CHD. Culturally sensitive strategies that recognise the effects of migration and extend beyond the health sector should be developed to target lifestyle changes in this high risk population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogen exposure has been suggested as one of the factors shaping the myriad of migration strategies observed in nature. Two hypotheses relate migration strategies to pathogen infection: the 'avoiding the tropics hypothesis' predicts that pathogen prevalence and transmission increase with decreasing non-breeding (wintering) latitude, while the "habitat selection hypothesis" predicts lower pathogen prevalence in marine than in freshwater habitats. We tested these scarcely investigated hypotheses by screening wintering and resident wading shorebirds (Charadriiformes) for avian malaria blood parasites (Plasmodium and Haemoproteus spp.) along a latitudinal gradient in Australia. We sequenced infections to determine if wintering migrants share malaria parasites with local shorebird residents, and we combined prevalence results with published data in a global comparative analysis. Avian malaria prevalence in Australian waders was 3.56% and some parasite lineages were shared between wintering migrants and residents, suggesting active transmission at wintering sites. In the global dataset, avian malaria prevalence was highest during winter and increased with decreasing wintering latitude, after controlling for phylogeny. The latitudinal gradient was stronger for waders that use marine and freshwater habitats (marine + freshwater) than for marine-restricted species. Marine + freshwater wader species also showed higher overall avian malaria parasite prevalence than marine-restricted species. By combining datasets in a global comparative analysis, we provide empirical evidence that migratory waders avoiding the tropics during the non-breeding season experience a decreased risk of malaria parasite infection. We also find global support for the hypothesis that marine-restricted shorebirds experience lower parasite pressures than shorebirds that also use freshwater habitats. Our study indicates that pathogen transmission may be an important driver of site selection for non-breeding migrants, a finding that contributes new knowledge to our understanding of how migration strategies evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conservation of migratory species represents a major challenge, as they use multiple sites, all contributing in varying degrees in sustaining high survival and reproductive success. There is particular concern for shorebirds of the East Asian-Australasian Flyway (EAAF), where declining numbers of migratory species have mostly been attributed to habitat loss along the East Asian coast. Using a stochastic dynamic programming migration model, we assessed the effect of habitat degradation scenarios along the EAAF on migration behaviour, survival and reproductive success of a long-distance migrating shorebird, the Ruddy Turnstone (Arenaria interpres). Following manipulation of habitat quality through changes in intake rate, we found that changes on the wintering (major non-breeding) ground in South Australia had the highest negative effect on reproductive success and survival. We also identified Taiwan and the Yellow Sea as sites with high importance for reproductive success. Although habitats along the East Asian coastline are currently most threatened from a range of global change processes, we highlight the importance of conserving high-quality shorebird wintering habitat in Australia. This may be of notable importance to trans-equatorial migratory shorebirds, which often make a long non-stop flight from their wintering grounds in order to skip low-latitude sites that typically provide little food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migratory birds make decisions about how far to travel based on cost-benefit trade-offs. However, in many cases the net effect of these trade-offs is unclear. We sought to address this question by measuring feather corticosterone (CORTf), leucocyte profile, avian malaria parasite prevalence and estimating fueling rates in three spatially segregated wintering populations of the migratory shorebird ruddy turnstone Arenaria interpres during their stay in the winter habitat. These birds fly from the high-Arctic breeding ground to Australia, but differ in that some decide to end their migration early (Broome, Western Australia), whereas others travel further to either South Australia or Tasmania. We hypothesized that the extra costs in birds migrating greater distances and overwintering in colder climates would be offset by benefits when reaching their destination. This would be evidenced by lower stress biomarkers in populations that travel further, owing to the expected benefits of greater resources and improved vitality. We show that avian malaria prevalence and physiological stress levels were lower in birds flying to South Australia and Tasmania than those overwintering in Broome. Furthermore, our modeling predicts that birds in the southernmost locations enjoy higher fueling rates. Our data are consistent with the interpretation that birds occupying more costly wintering locations in terms of higher migratory flight and thermoregulatory costs are compensated by better feeding conditions and lower blood parasite infections, which facilitates timely and speedy migration back to the breeding ground. These data contribute to our understanding of cost-benefit trade-offs in the decision making underlying migratory behaviour.