936 resultados para microtubule associated protein 4


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allogeneic mesenchymal stem cells (allo-MSCs) have recently garnered increasing interest for their broad clinical therapy applications. Despite this, many studies have shown that allo-MSCs are associated with a high rate of graft rejection unless immunosuppressive therapy is administered to control allo-immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a co-inhibitory molecule expressed on T cells that mediates the inhibition of T-cell function. Here, we investigated the osteogenic differentiation potency of allo-MSCs in an activated immune system that mimics the in vivo allo-MSC grafting microenvironment and explored the immunomodulatory role of the helper T cell receptorCTLA4 in this process. We found that MSC osteogenic differentiation was inhibited in the presence of the activated immune response and that overexpression of CTLA4 in allo-MSCs suppressed the immune response and promoted osteogenic differentiation. Our results support the application of CTLA4-overexpressing allo-MSCs in bone tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tau est une protéine associée aux microtubules enrichie dans l’axone. Dans la maladie d’Alzheimer, Tau devient anormalement hyperphosphorylée, s’accumule dans le compartiment somato-dendritique et s’agrège pour former des enchevêtrements neurofibrillaires (NFTs). Ces NFTs se propagent dans le cerveau dans un ordre bien précis. Ils apparaissent d’abord dans le cortex transenthorinal pour ensuite se propager là où ces neurones projettent, c’est-à-dire au cortex entorhinal. Les NFTs s’étendent ensuite à l’hippocampe puis à différentes régions du cortex et néocortex. De plus, des études récentes ont démontré que la protéine Tau peut être sécrétée par des lignées neuronales et que lorsqu’on injecte des agrégats de Tau dans un cerveau de souris, ceux-ci peuvent pénétrer dans les neurones et induire la pathologie de Tau dans le cerveau. Ces observations ont mené à l’hypothèse que la protéine Tau pathologique pourrait être sécrétée par les neurones, pour ensuite être endocytée par les cellules avoisinantes et ainsi propager la maladie. L’objectif de la présente étude était donc de prouver la sécrétion de la protéine Tau par les neurones et d’identifier par quelle voie elle est secrétée. Nos résultats ont permis de démontrer que la protéine Tau est sécrétée par des neurones corticaux de souris de type sauvage ainsi que dans un modèle de surexpression dans des cellules HeLa et PC12. Nos résultats indiquent que la sécrétion de Tau se ferait par les autophagosomes. Finalement, nous avons démontré que la protéine Tau sécrétée est déphosphorylée et clivée par rapport à la protéine Tau intracellulaire non sécrétée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized in the brain by the formation of amyloid-beta (Aβ)-containing plaques and neurofibrillary tangles containing the microtubule-associated protein tau. Neuroinflammation is another feature of AD and astrocytes are receiving increasing attention as key contributors. Although some progress has been made, the molecular mechanisms underlying the pathophysiology of AD remain unclear. Interestingly, some of the main proteins involved in AD, including amyloid precursor protein (APP) and tau, have recently been shown to be SUMOylated. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to regulate APP and tau and may modulate other proteins implicated in AD. Here we present an overview of recent studies suggesting that protein SUMOylation might be involved in the underlying pathogenic mechanisms of AD and discuss how this could be exploited for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. Aim: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. Results: We estimate the prevalence of the syndrome to be 1 in 16 000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729-41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p< 10(25)). Conclusion: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuro protection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB1) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB1 expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB1 protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB, mRNA levels were not changed after retinal ablation. Our results reveal that CB, expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB1 receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions. (c) 2008 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases are the components of the tumour microenvironment which play a crucial role in tumour progression. Matrix metalloproteinase-7 (MMP-7) is expressed in a variety of tumours and the expression is associated with an aggressive malignant phenotype and poor prognosis. A role for MMP-7 in the immune escape of tumours has been postulated, but the mechanisms are not clearly understood. The present study was focused on identifying physiological inactivators of MMP-7 and also to unravel the mechanisms involved in MMP-7 mediated immune escape. This study shows that human leukocyte elastase (HLE), secreted by polymorphonuclear leukocytes cleaves MMP-7 in the catalytic domain as revealed by N-terminal sequencing. Further analysis demonstrates that the activity of MMP-7 was drastically decreased after HLE treatment in a time and dose dependent manner. MMP-7 induces apoptosis resistance in tumour cells by cleaving CD95 and CD95L. The effect of HLE on MMP-7 mediated apoptosis resistance was analysed. In vitro stimulation of apoptosis by anti-Apo-1 (anti-CD95 antibody) and the chemotherapeutic drug doxorubicin is reduced by MMP-7. Also tumour specific cytotoxic T cells do not effectively kill tumour cells in the presence of MMP-7. This study revealed that HLE abrogates the negative effect of MMP-7 on apoptosis induced by CD95 stimulation, doxorubicin or cytotoxic T cells and restores apoptosis sensitivity of tumour cells. To gain insight into the possible immune modulatory functions of MMP-7, experiments were performed to identify new immune relevant substrates. The human T cell line, Jurkat, was selected for these studies. Hsc70 which is involved in uncoating of clathrin vesicles was found in the supernatants of the MMP-7 treated cells indicating a modulatory role of MMP-7 on endocytosis. Further studies demonstrated that MMP-7 leads to decreased clathrin staining in HEK293, HepG2, Jurkat, CD4+ T cells and dendritic cells. Results also show MMP-7 treatment increased surface expression of cytotoxic T lymphocyte associated protein-4 (CTLA-4) which accumulated due to inhibition of the clathrin mediated internalization in CD4+CD25+ cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P19 is a mouse-derived embryonal carcinoma cell line capable of differentiation toward ectodermal, mesodermal and endodermal lineages and could thus be differentiated into neurons. Different culture conditions were tested to optimise and increase the efficiency of neuronal differentiation since the population of P19-derived neurons was reported to be heterogeneous with respect to the morphology and neurotransmitters they synthesise. P19-derived neurons were cultured on microelectrode arrays as cell aggregates and as dissociated cells. Improved neuronal maturation was shown by the presence of microtubule associated protein 2, neurofilament and synaptophysin formation when initiation of neuronal differentiation was prolonged. High initial cell density cultures and coating of surfaces with polyethylenimine-laminin further improved neuronal maturation of differentiated P19 cells. Increased spontaneous activities of the P19-derived neurons were correspondingly recorded. Two to three hours recordings were performed between 17 and 25 days when extracellular signals were stabilised. It was found that P19-derived neurons developed network properties as partially synchronised network activities. P19-derived neurons appeared to give inhomogenous response to the 2 major neurotransmitters, -aminobutyric acid (GABA) and glutamate. The P19-derived neuronal networks obtained from optimised protocol in this thesis were predominantly GABAergic. The reproducible long term extracellular recordings performed showed that neurons derived from P19 embryonal carcinoma cells could be applied as a model for cell based biosensor in corporation with microelectrode arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances in melatonin - the neurohormone that signals environmental darkness as part of the circadian circuit of mammals - have been implicated in various psychopathologies in humans. At present, experimental evidence linking prenatal melatonin signaling to adult physiology, behavior, and gene expression is lacking. We hypothesized that administration of melatonin (5 mg/kg) or the melatonin receptor antagonist luzindole (5 mg/kg) to rats in utero would permanently alter the circadian circuit to produce differential growth, adult behavior, and hippocampal gene expressionin the male rat. Prenatal treatment was found to increase growth in melatonin-treated animals. In addition, subjects exposed to melatonin prenatally displayed increased rearing in the open field test and an increased right turn preference in the elevated plusmaze. Rats administered luzindole prenatally, however, displayed greater freezing and grooming behavior in the open field test and improved learning in the Morris water maze. Analysis of relative adult hippocampal gene expression with RT-PCR revealed increasedexpression of brain-derived neurotrophic factor (BDNF) with a trend toward increased expression of melatonin 1A (MEL1A) receptors in melatonin-exposed animals whereas overall prenatal treatment had a significant effect on microtubule-associated protein 2(MAP2) expression. Our data support the conclusion that the manipulation of maternal melatonin levels alters brain development and leads to physiological and behavioral abnormalities in adult offspring. We designate the term circadioneuroendocrine (CNE)axis and propose the CNE-axis hypothesis of psychopathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.