942 resultados para microgravity gas-liquid two-phase flow
Resumo:
Este trabalho é continuação da linha de pesquisa em escoamentos de alta velocidade, aerados, conduzida no departamento de Hidráulica e Saneamento da EESC/USP. O trabalho tem cunho experimental visando elucidar aspectos de enlaçamento de ar pela água, como resultado das flutuações turbulentas do escoamento do líquido. Medidas de vazão de ar e água, perfis de velocidade do escoamento líquido, perfis de concentração de ar no escoamento bifásico, perfis de intensidade turbulenta, comprimentos de jatos no salto sobre o aerador, foram efetuados com o fito de testar modelos que quantificam o enlaçamento de ar. Propostas básicas de quantificação de vazões de ar são apresentadas, fundamentadas em propostas da literatura, que mostram coerência entre vazões medidas diretamente e vazões estimadas. A metodologia desenvolvida no presente estudo permite obter adequadamente as grandezas relevantes para escoamentos aerados de alta velocidade. Quanto aos resultados obtidos, quando confrontados com os da literatura, indicam que há maiores incertezas para as propostas que envolvem principalmente as intensidades turbulentas.
Resumo:
At head of title: "Repair, Evaluation, Maintenance, and Rehabilitation Research Program."
Resumo:
"Contract AT(30-1)-2789."
Resumo:
"ILENR/AE-92/02."
Resumo:
Published polymer distribution data for aqueous poly(ethylene glycol)/dextran mixtures have been reassessed to illustrate the feasibility of their quantitative characterization in terms of the Flory-Huggins theory of polymer thermodynamics. Phase diagrams predicted by this characterization procedure provide better descriptions of the experimental data than those based on an earlier, oversimplified treatment in similar terms. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The mechanisms by which drops of secondary liquid dispersion ie. <100μ m, are collected, coalesced and transferred have been studied in particulate beds of different sizes and heights of glass ballotini. The apparatus facilitated different coalescer cell arrangements. The liquid-liquid system was toluene/de-ionised water. The inlet drop size distribution was measured by microscopy and using the Malvern Particle Size analyser; the outlet dispersion was sized by photography. The effect of packed height and packing size upon critical velocity, pressure drop and coalescence efficiency have been investigated. Single and two phase flow pressure drops across the packing were correlated by modified Blake-Kozeny equations. Two phase pressure drop was correlated by two equations, one for large ballotini sizes (267μm - 367μm), the other for small ballotini sizes (93μm- 147.5μm). The packings were efficient coalescers up to critical velocities of 3 x 10-2 m/s to 5 x 10-2 m/s. The saturation was measured across the bed using relative permeability and a mathematical model developed which related this profile to measured pressure drops. Filter coefficients for the range of packing studied were found to be accurately predicted from a modified queueing drop model.
Resumo:
The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate.