914 resultados para micro-scale gas flow
Resumo:
The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system. In the Unibo laboratories, catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture in the reactor. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. The Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend. Then, some zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene. Then, the effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.
Resumo:
Flavor compounds` formation and fermentative parameters of continuous high gravity brewing with yeasts immobilized on spent grains were evaluated at three different temperatures (7, 10 and 15 degrees C). The assays were performed in a bubble column reactor at constant dilution rate (0.05 h(-1)) and total gas flow rate (240 ml/min of CO(2) and 10 ml/min of air), with high-gravity all-malt wort (15 degrees Plato). The results revealed that as the fermentation temperature was increased from 7 to 15 degrees C, the apparent and real degrees of fermentation, rate of extract consumption, ethanol volumetric productivity and consumption of free amino nitrogen (FAN) increased. In addition, beer produced at 15 degrees C presented a higher alcohols to esters ratio (2.2-2.4:1) similar to the optimum values described in the literature. It was thus concluded that primary high-gravity (15 degrees Plato) all-malt wort fermentation by continuous process with yeasts immobilized on spent grains, can be carried out with a good performance at 15 degrees C.
Resumo:
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: ""rolling abrasion"" results when the abrasive particles roll on the surface of the tested specimen, while ""grooving abrasion"" is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at ""constant normal force"" and ""constant pressure"". Micro-scale abrasive wear tests were conducted with a ball of AISI52100 steel and a specimen of AISIH10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 mu m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: (i) for the selected values of constant normal force and constant pressure, the friction coefficient presents, approximately, the same range of values and (ii) loading conditions play an important role on the occurrence of rolling abrasion or grooving abrasion and, consequently, on the average value and scatter of the friction coefficient in micro-abrasive wear tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K (r)) and wall heat transfer coefficient (h (w)) were estimated from steady-state data and the characteristic packed bed time constant (tau) from transient data. A new correlation for the K (r) in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 40oW) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This article presents an evaluation of the effects of the spouted bed design and operating conditions on system fluiddynamics and process performance during enteric coating of hard gelatine capsules. The design parameters studied were the column diameter (150 mm and 200 mm), the included angle of the conical base, gamma (60 degrees or 40 degrees) and the presence or absence of a Venturi inserted before the inlet air orifice. The process variables studied were the ratio between the feed flow rate of the coating suspension to the spouting gas flow rate (W(s)/W(g)), the mass of capsules loaded to the equipment (M(0)), and the ratio between the Spouting gas flow rate to the gas flow rate at minimum spouting condition (Q/Q(ms)). The response variables were the rate of increase of the capsules mass (K(1)), and the adhesion efficiency (eta). The linear regression equation for the dependent variable K, in terms of the independent variables adequately described the process with an r(2) value of 0.872. Analysis of variance (ANOVA) revealed that increasing of W(s)/W(g), Q/Q(ms) and gamma significantly increased the adhesion efficiency. Adhesion efficiencies higher than 90% were achieved by selecting precise coating conditions, indicating the feasibility of the process for coating of hard gelatine capsules. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work evaluates the feasibility of the draft-tube spouted bed for drying of herbal extract. Drying runs were carried out according to a central composite design in a conical-cylindrical draft-tube spouted bed. The variables studied were the percentage of the drying aid (ADJ), the drying gas flow rate relative to gas flow at minimum spouting (Q/Q(ms)), and the flow rate of extract fed to the system relative to the spouting gas flow rate W(s)/W(g)). Colloidal silicon dioxide was the drying aid used in order to improve drying performance. Statistical analysis of the effects of processing parameters on product recovery, product accumulation in the bed, and product properties permitted the identification of parameters presenting significant effects on drying. Optimized drying conditions were related to experimental parameters as follow: high levels of the percentage of drying adjuvant (ADJ), high airflow rate relative to minimum spouting (Q/Q(ms)), and low values of the feed flow rate of the extract relative to the gas flow rate (W(s)/W(g)).
Resumo:
TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.