951 resultados para maximum rainfall
Resumo:
In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.
Resumo:
The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51), the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.
Resumo:
In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.
Resumo:
This thesis is a compilation of projects to study sediment processes recharging debris flow channels. These works, conducted during my stay at the University of Lausanne, focus in the geological and morphological implications of torrent catchments to characterize debris supply, a fundamental element to predict debris flows. Other aspects of sediment dynamics are considered, e.g. the coupling headwaters - torrent, as well as the development of a modeling software that simulates sediment transfer in torrent systems. The sediment activity at Manival, an active torrent system of the northern French Alps, was investigated using terrestrial laser scanning and supplemented with geostructural investigations and a survey of sediment transferred in the main torrent. A full year of sediment flux could be observed, which coincided with two debris flows and several bedload transport events. This study revealed that both debris flows generated in the torrent and were preceded in time by recharge of material from the headwaters. Debris production occurred mostly during winter - early spring time and was caused by large slope failures. Sediment transfers were more puzzling, occurring almost exclusively in early spring subordinated to runoffconditions and in autumn during long rainfall. Intense rainstorms in summer did not affect debris storage that seems to rely on the stability of debris deposits. The morpho-geological implication in debris supply was evaluated using DEM and field surveys. A slope angle-based classification of topography could characterize the mode of debris production and transfer. A slope stability analysis derived from the structures in rock mass could assess susceptibility to failure. The modeled rockfall source areas included more than 97% of the recorded events and the sediment budgets appeared to be correlated to the density of potential slope failure. This work showed that the analysis of process-related terrain morphology and of susceptibility to slope failure document the sediment dynamics to quantitatively assess erosion zones leading to debris flow activity. The development of erosional landforms was evaluated by analyzing their geometry with the orientations of potential rock slope failure and with the direction of the maximum joint frequency. Structure in rock mass, but in particular wedge failure and the dominant discontinuities, appear as a first-order control of erosional mechanisms affecting bedrock- dominated catchment. They represent some weaknesses that are exploited primarily by mass wasting processes and erosion, promoting not only the initiation of rock couloirs and gullies, but also their propagation. Incorporating the geological control in geomorphic processes contributes to better understand the landscape evolution of active catchments. A sediment flux algorithm was implemented in a sediment cascade model that discretizes the torrent catchment in channel reaches and individual process-response systems. Each conceptual element includes in simple manner geomorphological and sediment flux information derived from GIS complemented with field mapping. This tool enables to simulate sediment transfers in channels considering evolving debris supply and conveyance, and helps reducing the uncertainty inherent to sediment budget prediction in torrent systems. Cette thèse est un recueil de projets d'études des processus de recharges sédimentaires des chenaux torrentiels. Ces travaux, réalisés lorsque j'étais employé à l'Université de Lausanne, se concentrent sur les implications géologiques et morphologiques des bassins dans l'apport de sédiments, élément fondamental dans la prédiction de laves torrentielles. D'autres aspects de dynamique sédimentaire ont été abordés, p. ex. le couplage torrent - bassin, ainsi qu'un modèle de simulation du transfert sédimentaire en milieu torrentiel. L'activité sédimentaire du Manival, un système torrentiel actif des Alpes françaises, a été étudiée par relevés au laser scanner terrestre et complétée par une étude géostructurale ainsi qu'un suivi du transfert en sédiments du torrent. Une année de flux sédimentaire a pu être observée, coïncidant avec deux laves torrentielles et plusieurs phénomènes de charriages. Cette étude a révélé que les laves s'étaient générées dans le torrent et étaient précédées par une recharge de débris depuis les versants. La production de débris s'est passée principalement en l'hiver - début du printemps, causée par de grandes ruptures de pentes. Le transfert était plus étrange, se produisant presque exclusivement au début du printemps subordonné aux conditions d'écoulement et en automne lors de longues pluies. Les orages d'été n'affectèrent guère les dépôts, qui semblent dépendre de leur stabilité. Les implications morpho-géologiques dans l'apport sédimentaire ont été évaluées à l'aide de MNT et études de terrain. Une classification de la topographie basée sur la pente a permis de charactériser le mode de production et transfert. Une analyse de stabilité de pente à partir des structures de roches a permis d'estimer la susceptibilité à la rupture. Les zones sources modélisées comprennent plus de 97% des chutes de blocs observées et les bilans sédimentaires sont corrélés à la densité de ruptures potentielles. Ce travail d'analyses des morphologies du terrain et de susceptibilité à la rupture documente la dynamique sédimentaire pour l'estimation quantitative des zones érosives induisant l'activité torrentielle. Le développement des formes d'érosion a été évalué par l'analyse de leur géométrie avec celle des ruptures potentielles et avec la direction de la fréquence maximale des joints. Les structures de roches, mais en particulier les dièdres et les discontinuités dominantes, semblent être très influents dans les mécanismes d'érosion affectant les bassins rocheux. Ils représentent des zones de faiblesse exploitées en priorité par les processus de démantèlement et d'érosion, encourageant l'initiation de ravines et couloirs, mais aussi leur propagation. L'incorporation du control géologique dans les processus de surface contribue à une meilleure compréhension de l'évolution topographique de bassins actifs. Un algorithme de flux sédimentaire a été implémenté dans un modèle en cascade, lequel divise le bassin en biefs et en systèmes individuels répondant aux processus. Chaque unité inclut de façon simple les informations géomorpologiques et celles du flux sédimentaire dérivées à partir de SIG et de cartographie de terrain. Cet outil permet la simulation des transferts de masse dans les chenaux, considérants la variabilité de l'apport et son transport, et aide à réduire l'incertitude liée à la prédiction de bilans sédimentaires torrentiels. Ce travail vise très humblement d'éclairer quelques aspects de la dynamique sédimentaire en milieu torrentiel.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Potential-Scour Assessments and Estimates of Maximum Scour at Selected Bridges in Iowa, HR-344, 1995
Resumo:
This report presents the results of potential-scour assessments at 130 bridges and estimates of maximum scour at 10 bridges, in Iowa. All of the bridges evaluated in the study are constructed bridges (not culverts) that are sites of active or discontinued streamflow-gaging stations and peak-stage measurement sites. The period of the study was from October 1991 to September 1994. The potential-scour assessments were made using a potential-scour index developed by the U.S. Geological Survey for a study in Tennessee. Higher values of the index suggest a greater likelihood of scour-related problems occurring at a bridge. The estimates of maximum scour were made using scour equations recommended by the Federal Highway Administration. In this study, the long term aggradation or degradation that occurred during the period of streamflow data collection at each site was evaluated. Although the abutment-scour equation predicted deep scour holes at many of the sites, the only significant abutment scour that was measured was erosion of the embankment at the left abutment at one bridge after a flood.
Resumo:
Severe flooding occurred during July 19-25, 1999, in the Wapsipinicon and Cedar River Basins following two thunderstorms over northeast Iowa. During July 18-19, as much as 6 inches ofrainfall was centered over Cerro Gordo, Floyd, Mitchell, and Worth Counties. During July 20-21, a second storm occurred in which an additional rainfall of as much as 8 inches was centered over Chickasaw and Floyd Counties. The cumulative effect of the storms produced floods with new maximum peak discharges at the following streamflow-gaging stations: Wapsipinicon River near Tripoli, 19,400 cubic feet per second; Cedar River at Charles City, 31,200 cubic feet per second (recurrence interval about 90 years); Cedar River at Janesville, 42,200 cubic feet per second (recurrence interval about 80 years); and Flood Creek near Powersville, 19,000 cubic feet per second. Profiles of flood elevations for the July 1999 flood are presented in this report for selected reaches along the Wapsipinicon, Cedar, and Shell Rock Rivers and along Flood Creek. Information about the river basins, rain storms, and flooding are presented along with information on temporary bench marks and reference points in the Wapsipinicon and Cedar River Basins.
Resumo:
Foram avaliados os efeitos da aplicação de fósforo (P) em solo argiloso, de textura média e arenoso, sobre a produção de matéria seca de Panicum maximum Jacq. cv. Tanzânia. O ensaio foi conduzido em casa de vegetação, em vasos de plástico contendo 10 dm³ de solo, em esquema fatorial e delineamento inteiramente ao acaso. Após calagem para V = 70% e aplicação de 0, 35, 70, 105 e 140 mg/dm³ de P, o solo foi umedecido, e depois de 30 dias, secado e amostrado. O ensaio foi conduzido por 76 dias, a partir da emergência das plântulas, com o primeiro corte aos 48 dias, a 10 cm do solo, e o segundo, aos 76,rente ao solo. Com a aplicação de P houve aumento de produção de matéria seca, e o maior acréscimo ocorreu com a aplicação de 35 mg/dm³. A maior produção foi obtida no solo de textura média. O teor de P nas plantas estava adequado nos solos arenoso e argiloso. No de textura média, ele diminuiu com o aumento da produção,caracterizando efeito de diluição. Com aprodução relativa e o teor de P de cada solo, foi determinado o nível crítico de 38 mg/dm³ de P extraído por resina.
Resumo:
The objectives of this work were to estimate the genetic and phenotypic parameters and to predict the genetic and genotypic values of the selection candidates obtained from intraspecific crosses in Panicum maximum as well as the performance of the hybrid progeny of the existing and projected crosses. Seventy-nine intraspecific hybrids obtained from artificial crosses among five apomictic and three sexual autotetraploid individuals were evaluated in a clonal test with two replications and ten plants per plot. Green matter yield, total and leaf dry matter yields and leaf percentage were evaluated in five cuts per year during three years. Genetic parameters were estimated and breeding and genotypic values were predicted using the restricted maximum likelihood/best linear unbiased prediction procedure (REML/BLUP). The dominant genetic variance was estimated by adjusting the effect of full-sib families. Low magnitude individual narrow sense heritabilities (0.02-0.05), individual broad sense heritabilities (0.14-0.20) and repeatability measured on an individual basis (0.15-0.21) were obtained. Dominance effects for all evaluated characteristics indicated that breeding strategies that explore heterosis must be adopted. Less than 5% increase in the parameter repeatability was obtained for a three-year evaluation period and may be the criterion to determine the maximum number of years of evaluation to be adopted, without compromising gain per cycle of selection. The identification of hybrid candidates for future cultivars and of those that can be incorporated into the breeding program was based on the genotypic and breeding values, respectively. The prediction of the performance of the hybrid progeny, based on the breeding values of the progenitors, permitted the identification of the best crosses and indicated the best parents to use in crosses.
Resumo:
This paper presents a very fine grid hydrological model based on the spatiotemporal repartition of precipitation and on the topography. The goal is to estimate the flood on a catchment area, using a Probable Maximum Precipitation (PMP) leading to a Probable Maximum Flood (PMF). The spatiotemporal distribution of the precipitation was realized using six clouds modeled by the advection-diffusion equation. The equation shows the movement of the clouds over the terrain and also gives the evolution of the rain intensity in time. This hydrological modeling is followed by a hydraulic modeling of the surface and subterranean flows, done considering the factors that contribute to the hydrological cycle, such as the infiltration, the exfiltration and the snowmelt. This model was applied to several Swiss basins using measured rain, with results showing a good correlation between the simulated and observed flows. This good correlation proves that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type. In this article we present some results obtained using a PMP rainfall and the developed model.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
Lutetium zoning in garnet within eclogites from the Zermatt-Saas Fee zone, Western Alps, reveal sharp, exponentially decreasing central peaks. They can be used to constrain maximum Lu volume diffusion in garnets. A prograde garnet growth temperature interval of 450-600 A degrees C has been estimated based on pseudosection calculations and garnet-clinopyroxene thermometry. The maximum pre-exponential diffusion coefficient which fits the measured central peak is in the order of D-0= 5.7*10(-6) m(2)/s, taking an estimated activation energy of 270 kJ/mol based on diffusion experiments for other rare earth elements in garnet. This corresponds to a maximum diffusion rate of D (600 A degrees C) = 4.0*10(-22) m(2)/s. The diffusion estimate of Lu can be used to estimate the minimum closure temperature, T-c, for Sm-Nd and Lu-Hf age data that have been obtained in eclogites of the Western Alps, postulating, based on a literature review, that D (Hf) < D (Nd) < D (Sm) a parts per thousand currency sign D (Lu). T-c calculations, using the Dodson equation, yielded minimum closure temperatures of about 630 A degrees C, assuming a rapid initial exhumation rate of 50A degrees/m.y., and an average crystal size of garnets (r = 1 mm). This suggests that Sm/Nd and Lu/Hf isochron age differences in eclogites from the Western Alps, where peak temperatures did rarely exceed 600 A degrees C must be interpreted in terms of prograde metamorphism.
Resumo:
Between late spring and early fall, the development of storms is common in Catalonia. Despite the fact that they usually produce heavy showers of short duration, they can also involve severe weather with ice pellets or hail. While the latter usually affect inland regions, and there are numerous publications on these cases; the analysis of events affecting the coast and causing damage to public and private properties is not so well developed. The aim of this study is to provide additional thermodynamic indicators that help differentiate storms with hail from storms without hail, considering cases that have affected various regions of Catalonia, mainly coastal areas. The aim is to give more information to improve prognosis and the ability to detail information in these situations. The procedure developed involved the study of several episodes of heavy rainfall and hail that hit Catalonia during the 2003-2009 period, mainly in the province of Girona, and validated the proposal during the campaign of late summer and fall of 2009, as well as 2012. For each case, several variables related to temperature, humidity and wind were analyzed at different levels of the atmosphere, while the information provided by the radio sounding in Barcelona was also taken into account. From this study, it can be concluded that the temperature difference between 500 hPa and 850 hPa, the humidity in the lower layers of the atmosphere and the LI index are good indicators for the detection of storms with associated hail.