972 resultados para maximum angular velocity
Resumo:
Component natural remanent magnetizations derived from u-channel and 1-qcm discrete samples from ODP Site 919 (Irminger Basin) indicate the existence of four intervals of negative inclinations in the upper Brunhes Chronozone. According to the age model based on planktic oxygen isotope data, these "excursional" intervals occur in sediments deposited during the following time intervals: 32-34 ka, 39-41 ka, 180-188 ka and 205-225 ka. These time intervals correspond to polarity excursions detected elsewhere, known as Mono Lake, Laschamp, Iceland Basin and Pringle Falls. The isotope-based age model is supported by the normalized remanence (paleointensity) record that can be correlated to other calibrated paleointensity records for the 0-500 ka interval, such as that from ODP Site 983. For the intervals associated with the Mono Lake and Laschamp excursions, virtual geomagnetic poles (VGPs) reach equatorial latitudes and mid-southerly latitudes, respectively. For intervals associated with the Iceland Basin and Pringle Falls excursions, repeated excursions of VGPs to high southerly latitudes indicate rapid directional swings rather than a single short-lived polarity reversal. The directional instability associated with polarity excursions is not often recorded, probably due to smoothing of the sedimentary record by the process of detrital remanence (DRM) acquisition.
Resumo:
Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite from eolian dust, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (kARM/k and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic d18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic d18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced detrital/eolian hematite input.
Resumo:
Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
Resumo:
Integrated Ocean Drilling Program (IODP) Site U1308 (central North Atlantic) records paleomagnetic directional and relative paleointensity (RPI) variations for the last 1.5 Myr, in 110 m of the sediment sequence at a mean sedimentation rate of 7.3 cm/kyr. A detailed benthic oxygen isotope record was combined with RPI to produce an integrated, high-resolution magneto-isotopic stratigraphy for Site U1308. Apart from the well-known polarity reversals in this interval, the Punaruu excursion is recorded at 1092 ka and the Cobb Mountain Subchron in the 1182-1208 ka interval. The paleointensity proxies are determined as slopes of NRM versus ARM and NRM versus ARMAQ (ARM acquisition) with linear correlation coefficients to monitor the quality of the linear fit. The RPI record for Site U1308 is compared with the three other paleointensity records (one from the Western Equatorial Pacific and two from the North Atlantic) that cover the same time interval and have accompanying oxygen isotope records. The Match protocol of Lisiecki and Lisiecki (2002) is used to optimize the correlation of paleointensity records. Beginning with the original (published) age models for each record, the Match routine is used to optimize the RPI correlations to Site U1308, with checks to ensure compatibility with oxygen isotope records. Squared wavelet coherence (WTC) indicates significant improvement in RPI (and oxygen isotope) correlations after matching each RPI record to Site U1308, particularly for periods > 10 kyr. The level of coherence for the Atlantic RPI records and the lower resolution Pacific record implies synchronous global variability (at scales > 10 kyr) that can be attributed to the axial dipole geomagnetic field.
Resumo:
Paleomagnetic and rock-magnetic analyses from discrete samples of carbonate sites on the Queensland Plateau were used to determine magnetic polarity reversal stratigraphy and the nature of magnetization in these sediments. Magnetic polarity zones were correlated with the geomagnetic polarity time scale in the upper portions of cores at Sites 812 through 814, usually back to a late Pliocene age. Loss of reliable directional data was coincidental with a major decrease in magnetic intensity, below which, no stable polarity zones could be identified. The intensity reduction is either an in-situ alteration of magnetic grains, or an input signal representing progressive increase in the magnetic component of Queensland Plateau sediments. Although not conclusive at this point, the geochemical conditions and differing age of intensity reduction support the former hypothesis. Rock-magnetic analysis of carbonate sediments suggests that ultrafine-grained magnetite or maghemite crystals is an important carrier of remanence and may be biogenic in origin. Application of a recently calibrated anhysteretic remanent magnetization test to assess configuration of single-domain crystal within a natural matrix indicates that cementation (ooze-chalk-limestone) may be important in post-depositional changes affecting magnetostatic grain interaction.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.