998 resultados para massive gravitational models
Resumo:
The gamitana is a species of socio-economic importance in the Peruvian Amazon, often intensively produced locally for human consumption. Because of this, more studies concerning parasite populations affecting this species culture are necessary. In this study, a heavy copepod infestation of Perulernaea gamitanae is reported in a managed culture of gamitana. The prevalence of infection was 100% and mortality of the fish population was complete. The average intensity and abundance of the parasite was 268.8 parasites per individual.
Resumo:
We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
We study the stability of D >= 7 asymptotically flat black holes rotating in a single two-plane against tensor-type gravitational perturbations. The extensive search of quasinormal modes for these black holes did not indicate any presence of growing modes, implying the stability of simply rotating Myers-Perry black holes against tensor-type perturbations.
Resumo:
We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.
Resumo:
We study the stability of AdS black holes rotating in a single two-plane for tensor-type gravitational perturbations in D > 6 space-time dimensions. First, by an analytic method, we show that there exists no unstable mode when the magnitude a of the angular momentum is smaller than r(h)(2)/R, where r(h) is the horizon radius and R is the AdS curvature radius. Then, by numerical calculations of quasinormal modes, using the separability of the relevant perturbation equations, we show that an instability occurs for rapidly rotating black holes with a > r(h)(2)/R, although the growth rate is tiny (of order 10(-12) of the inverse horizon radius). We give numerical evidence indicating that this instability is caused by superradiance.
Resumo:
We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.
Resumo:
We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.
Resumo:
The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK black holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.
Resumo:
We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.