982 resultados para mapping technique
Resumo:
This paper presents an improved constitutive equation of frame in the context of continuous medium technique. This improved constitutive equation, which is a consistent formulation of column global bending, is applicable to a complete class of frameworks including the ideal shear frame panel, for which the beams are assumed to be rigid, and the associated column system, for which the rigidity of beams is negligible. Global buckling and second-order effects of the frame structure are discussed. The main results can be extended to other types of lateral stiffening elements as built-up columns. A worked example is presented in order to compare the main results with those obtained by the classic matrix method. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Resumo:
Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.
Resumo:
Copper strike baths are extensively used in metal plating industry as they present the ability to plate adherent copper layers on less-noble metal substrates such as steel and zinc die castings. However, in the last few years, due to environmental controls and safety policies for operators, the plating industry has been interested in replacing the toxic cyanide copper strike baths with environmentally friendly baths. A broad bibliographic review showed that the published papers, referring to the new nontoxic copper strike baths, are patents, having little or no emphasis focused on electrodeposition mechanisms. Therefore, it was decided to study the copper electrodeposition mechanism from a strike alkaline bath prepared with one of the most nontoxic chelating agents cited in many patents which is the 1-hydroxyethane-1,1-diphosphonic acid, known as HEDP. This acid forms very stable water soluble complexes with Cu(2+) ions, thus cupric sulfate was used for preparing the plating bath. The results obtained through a cyclic voltammetry technique showed that Cu(2+) ion reduction to Cu from an HEDP electrodeposition bath occurs via a direct reduction reaction without a formation of Cu(+) intermediates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Aims To verify whether spectral components of atrial electrograms (AE) during sinus rhythm (SR) correlate with cardiac ganglionated plexus (GP) sites. Methods and results Thirteen patients undergoing atrial fibrillation (AF) ablation were prospectively enrolled. Prior to radio frequency application, endocardial AE were recorded with a sequential point-by-point approach. Electrical stimuli were delivered at 20 Hz, amplitude 100 V, and pulse width of 4 ms. A vagal response was defined as a high-frequency stimulation (HFS) evoked atrioventricular block or a prolongation of RR interval. Spectral analysis was performed on single AE during SR, sampling rate of 1000 Hz, Hanning window. Overall, 1488 SR electrograms were analysed from 186 different left atrium sites, 129 of them corresponding to negative vagal response sites, and 57 to positive response sites. The electrogram duration and the number of deflections were similar in positive and negative response sites. Spectral power density of sites with vagal response was lower between 26 and 83 Hz and higher between 107 and 200 Hz compared with negative response sites. The area between 120 and 170 Hz normalized to the total spectrum area was tested as a diagnostic parameter. Receiver operating characteristic curve analysis demonstrated that an area120-170/area(total) value >0.14 identified vagal sites with 70.9% sensitivity and 72.1% specificity. Conclusion Spectral analysis of AE during SR in sites that correspond to the anatomical location of the GP is feasible and may be a simpler method of mapping the cardiac autonomic nervous system, compared with the HFS technique.
Resumo:
The competition among the companies depends on the velocity and efficience they can create and commercialize knowledge in a timely and cost-efficient manner. In this context, collaboration emerges as a reaction to the environmental changes. Although strategic alliances and networks have been exploited in the strategic literature for decades, the complexity and continuous usage of these cooperation structures, in a world of growing competition, justify the continuous interest in both themes. This article presents a scanning of the contemporary academic production in strategic alliances and networks, covering the period from January 1997 to august 2007, based on the top five journals accordingly to the journal of Citation Report 2006 in the business and management categories simultaneously. The results point to a retraction in publications about strategic alliances and a significant growth in the area of strategic. networks. The joint view of strategic alliances and networks, cited by some authors a the evolutionary path of study, still did not appear salient. The most cited topics found in the alliance literature are the governance structure, cooperation, knowledge transfer, culture, control, trust, alliance formation,,previous experience, resources, competition and partner selection. The theme network focuses mainly on structure, knowledge transfer and social network, while the joint vision is highly concentrated in: the subjects of alliance formation and the governance choice.
Resumo:
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F(2) population. Two-hundred and fifty six F(2) plants were genotyped with 143 microsatellite markers and their F(2:3) progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance x dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.
Resumo:
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that. has been used for estimating the average degree of dominance of quantitative trait 106 (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selling. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive X additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.
Resumo:
Imaging Spectroscopy (IS) is a promising tool for studying soil properties in large spatial domains. Going from point to image spectrometry is not only a journey from micro to macro scales, but also a long stage where problems such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the BRDF effect and more are often encountered. In this paper we provide an up-to-date overview of some of the case studies that have used IS technology for soil science applications. Besides a brief discussion on the advantages and disadvantages of IS for studying soils, the following cases are comprehensively discussed: soil degradation (salinity, erosion, and deposition), soil mapping and classification, soil genesis and formation, soil contamination, soil water content, and soil swelling. We review these case studies and suggest that the 15 data be provided to the end-users as real reflectance and not as raw data and with better signal-to-noise ratios than presently exist. This is because converting the raw data into reflectance is a complicated stage that requires experience, knowledge, and specific infrastructures not available to many users, whereas quantitative spectral models require good quality data. These limitations serve as a barrier that impedes potential end-users, inhibiting researchers from trying this technique for their needs. The paper ends with a general call to the soil science audience to extend the utilization of the IS technique, and it provides some ideas on how to propel this technology forward to enable its widespread adoption in order to achieve a breakthrough in the field of soil science and remote sensing. (C) 2009 Elsevier Inc. All rights reserved.