999 resultados para magnetic cluster


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customized magnetic traps were developed to produce a domain of dense plasmas with a narrow ion beam directed to a particular area of the processed substrate. A planar magnetron coupled with an arc discharge source created the magnetic traps to confine the plasma electrons and generate the ion beam with the controlled ratio of ion-to-neutral fluxes. Images of the plasma jet patterns and numerical vizualizations help explaining the observed phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study involving both experimental and numerical investigations was made to resolve a long-standing problem of understanding electron conductivity mechanism across magnetic field in low-temperature plasmas. We have calculated the plasma parameters from experimentally obtained electric field distribution, and then made a 'back' comparison with the distributions of electron energy and plasma density obtained in the experiment. This approach significantly reduces an influence of the assumption about particular phenomenology of the electron conductivity in plasma. The results of the experiment and calculations made by this technique have showed that the classical conductivity is not capable of providing realistic total current and electron energy, whereas the phenomenological anomalous Bohm mobility has demonstrated a very good agreement with the experiment. These results provide an evidence in favor of the Bohm conductivity, thus making it possible to clarify this pressing long-living question about the main driving mechanism responsible for the electron transport in low-temperature plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective control of the ion current distribution over large-area (up to 103 cm2) substrates with the magnetic fields of a complex structure by using two additional magnetic coils installed under the substrate exposed to vacuum arc plasmas is demonstrated. When the magnetic field generated by the additional coils is aligned with the direction of the magnetic field generated by the guiding and focusing coils of the vacuum arc source, a narrow ion density distribution with the maximum current density 117 A m-2 is achieved. When one of the additional coils is set to generate the magnetic field of the opposite direction, an area almost uniform over the substrate of 103 cm2 ion current distribution with the mean value of 45 A m-2 is achieved. Our findings suggest that the system with the vacuum arc source and two additional magnetic coils can be effectively used for the effective, high throughput, and highly controllable plasma processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous steady-state current drive in a spherical argon plasma by transverse oscillating magnetic field (OMF) is investigated. The experimental results reveal that a rotating magnetic field is generated, and its amplitude depends linearly on the external steady vertical magnetic field. It has been shown that steady toroidal currents of up to about 400 A can be driven by a 490 kHz OMF with an input power of 1.4 kW. The generation of steady toroidal magnetic fields directed oppositely in the upper and lower hemispheres have been recorded. The measurements of time-varying magnetic fields unveil a strong nonlinear effect of the frequency-doubled field harmonics generation. The electron number density and temperature of up to 6.2×1018 m-3 and 12 eV have been obtained. The observed effects validate the existing theory of the OMF current drive in spherical plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster ions and charged and neutral nanoparticle concentrations were monitored using a neutral cluster and air ion spectrometer (NAIS) over a period of one year in Brisbane, Australia. The study yielded 242 complete days of usable data, of which particle formation events were observed on 101 days. Small, intermediate and large ion concentrations were evaluated in real time. In the diurnal cycle, small ion concentration was highest during the second half of the night while large ion concentrations were a maximum during the day. The small ion concentration showed a decrease when the large ion concentration increased. Particle formation was generally followed by a peak in the intermediate ion concentration. The rate of increase of intermediate ions was used as the criteria for identifying particle formation events. Such events were followed by a period of growth to larger sizes and usually occurred between 8 am and 2 pm. Particle formation events were found to be related to the wind direction. The gaseous precursors for the production of secondary particles in the urban environment of Brisbane have been shown to be ammonia and sulfuric acid. During these events, the nanoparticle number concentrations in the size range 1.6 to 42 nm, which were normally lower than 1x104 cm-3, often exceeded 5x104 cm-3 with occasional values over 1x105 cm-3. Cluster ions generally occurred in number concentrations between 300 and 600 cm-3 but decreased significantly to about 200 cm-3 during particle formation events. This was accompanied by an increase in the large ion concentration. We calculated the fraction of nanoparticles that were charged and investigated the occurrence of possible overcharging during particle formation events. Overcharging is defined as the condition where the charged fraction of particles is higher than in charge equilibrium. This can occur when cluster ions attach to neutral particles in the atmosphere, giving rise to larger concentrations of charged particles in the short term. Ion-induced nucleation is one of the mechanisms of particle formation in the atmosphere, and overcharging has previously been considered as an indicator of this process. The possible role of ions in particle formation was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the excitation of surface plasma waves in the presence of external, steady crossed magnetic and electric fields is studied analytically and numerically for a geometry in which the waves propagate along the interface between a plasma-like medium and a metal in the direction transverse to both fields. The magnetic and electric fields are assumed to be parallel and transverse to the interface, respectively. The condition for which the drift instability of the surface wave arises is found.