948 resultados para lotus embryo
Resumo:
Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of equine chorionic gonadotropin (eCG) treatment on the number of induced accessory corpora lutea (CL), plasma progesterone concentrations and pregnancy rate in cross-bred heifers after transfer of frozen-thawed (1.5 M ethylene glycol) embryos. All recipients received 500 mug PGF2alpha (dl-cloprostenol, i.m.) at random stages of the estrous cycle (Day 0) and were observed for estrus for 7 days. on Day 14, heifers detected in estrus between 2 and 7 days after PGF2alpha treatment were randomly allocated to four groups (n = 83 per group) and given 0 (control), 200, 400, or 600 IU of eCG. Two days later (Day 16), these recipients were given PGF2a and observed for estrus. Six to eight days after detection of estrus, plasma samples were collected to determine progesterone concentration and ultrasonography was performed to observe ovarian structures. Heifers with multiple CL or a single CL >15 mm in diameter received an embryo by direct transfer. Embryos of excellent and good quality were thawed and transferred to the recipients by the same veterinarian. Pregnancy was diagnosed by ultrasonography and confirmed by transrectal palpation 21 and 83 days after embryo transfer (ET), respectively. Plasma progesterone concentrations on the day of transfer (Day 7 of the estrous cycle) were 3.9 +/- 0.7, 4.2 +/- 0.4, 6.0 +/- 0.4, and 7.8 +/- 0.6 ng/ml for groups Control, 200, 400, and 600, respectively (Control versus treated groups P = 0.009; 200 versus 400 and 600 groups P = 0.0001; and 400 versus 600 P = 0.012). Conception rates 83 days after ET were 41.9, 50.0, 25.0, and 20.9% for groups Control, 200, 400, and 600, respectively (200 versus 400 and 600 groups P = 0.0036). In conclusion, an increase in progesterone concentration, induced by eCG treatment, did not improve pregnancy rates in ET recipients. Conversely, there was a decline in conception rates in the animals with the highest plasma progesterone concentrations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
ContentsThe objective of this study is to evaluate the reproductive efficiency in donors and recipient Mangalarga Marchador mares in commercial programmes of embryo transfer (ET) and the effects of some reproductive characteristics and ET methodology on conception rates in the recipient mares. A total of 1140 flushing procedures were performed and 830 embryos (72.8%) were recovered. There were no differences between the rates of embryonic recovery in the different breeding seasons (p > 0.05) and 92.8% of the recovered embryos were 8-9 days old. There was no difference in the embryonic recovery regarding the collection order from the first to the ninth embryo collection along the breeding season, as well as among mares inseminated during the foal heat or subsequent cycles (p > 0.05). Pregnancy rates observed in the total period of all reproductive seasons at 15, 30, 45 and 60 days of pregnancy were 73.4, 69.9, 66.7 and 64.5%, respectively. Differences in pregnancy rate and early embryonic loss rates were not observed between embryos transferred immediately after collection (66.8% and 13.5%) and embryos transported at room temperature for periods of < 1 h (62.9% and 14.4%; p > 0.05). Pregnancy rates were higher when the interval between ovulations of donor and recipient mares remained between -3 and -2 days (p < 0.05), and the lowest rates were observed for intervals of -6 days (p < 0.05) with intermediary values for intervals of -1, 0 and +1 (p > 0.05). Embryonic loss rates, however, did not differ between intervals of ovulation's synchronism between donor and recipient mares (p > 0.05). This flexibilization in the ovulatory synchronism between donor and recipient mares optimizes the use of recipient mares, thus reducing costs and facilitating management of horse breeding farms.
Resumo:
To investigate why the preferred means to produce bovine embryos in Brazil has changed from in vivo to in vitro, we compared these two approaches in the same Nelore cows (n = 30) and assessed total embryo production and pregnancy rates. Without a specific schedule, all cows were subjected to ultrasound-guided ovum pick up (OPU)/in vitro production (IVP) and MOET, with intervals ranging from 15 to 45 d between procedures, respectively. To produce in vivo embryos, cows were superovulated and embryos were recovered nonsurgically from 1 to 3 times (1.4 +/- 0.6). whereas OPU/IVP was repeated from 1 to 5 times (3.2 +/- 1.2) in each donor cow during a 12-mo interval. Embryos obtained from both methods were transferred to crossbred heifers. on average. 25.6 +/- 15.3 immature oocytes were collected per OPU attempt. The average number of embryos produced by OPU/IVP (9.4 +/- 5.3) was higher (P < 0.05) than the MOET method (6.7 +/- 3.7). However, pregnancy rates were lower (P < 0.05) following transfer of IVP (33.5%) versus in vivo-derived embryos (41.5%) embryos. Embryonic losses between Days 30 and 60 and fetal sex ratio were similar (P > 0.05) between in vivo and in vitro-derived embryos. We concluded that in Nelore cows, with an interval of 15 d between OPU procedures, it was possible to produce more embryos and pregnancies compared to conventional MOET. (C) 2009 Elsevier B.V. All rights reserved.