928 resultados para liquid phase epitaxy
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.
Resumo:
2016
Resumo:
For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.
Resumo:
The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.
Resumo:
Crystalline beta-BBO thin films have been successfully prepared on (001)-oriented Sr2+-doped alpha-BBO substrates using liquid phase epitaxy and pulsed laser deposition techniques. The films were characterized by X-ray diffraction and X-ray rocking curve (XRC). The present results manifest that the beta-BBO thin films grown on Sr2+-doped alpha-BBO substrates have larger degree of orientation f-value and smaller XRC FWHM than the ones grown on other reported substrates. Compared with other substrates, alpha-BBO has the same UV cutoff and the similar structure to beta-BBO. These results reveal that alpha-BBO single crystal may be a promising substrate proper to the growth of beta-BBO films. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crystalline beta-BBO thin films were successfully prepared on (001)-oriented Sr2+-doped alpha-BBO substrates by using liquid phase epitaxy, pulsed laser deposition and vapor transport equilibration techniques. The films were characterized by X-ray diffraction and X-ray rocking curve. The present results manifest that the beta-BBO thin films grown on Sr2+-doped alpha-BBO substrates have larger degree of orientation f value and smaller X-ray rocking curve FWHM than the ones grown on other reported substrates. Compared with other substrates, alpha-BBO has the similar structure, the same UV cutoff and the same chemical properties to beta-BBO. These results reveal that Sr2+-doped alpha-BBO single crystal may be a promising substrate proper to the growth of beta-BBO films.
Resumo:
本文介绍了液相外延技术在制备硅材料、碲镉汞材料、石榴石型单晶材料、Ⅲ-Ⅴ族半导体材料和其他一些无机材料方面的应用,简述了液相外延技术近十多年来在系统改善、工艺改进和相关理论研究方面的成果,并指出了液相外延技术相对于其他外延技术的优势及其发展需要克服的困难。
Resumo:
Morphological defects in beta-barium borate (beta-BBO) thin films grown on Sr2+ -doped alpha-BBO substrates by liquid phase epitaxy (LPE) technique were studied by scanning electron micrograph (SEM), atomic force microscopy (AFM) and optical spectroscopy. The present results indicate that the main defects exit in beta-BBO thin films are microcracks and hollow structure. The formation of microcrack is due to the lattice mismatch and the difference of thermal expansion coefficients between substrate and film. The hollow structure might be caused during the combination of islands, which formed in the initial stage. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
采用液相外延法在掺Sr^2+的Q—BBO(001)衬底上制备了β-BBO薄膜,研究了制备条件对薄膜质量的影响.结果表明:当生长温度为810℃时,转速为300r/min生长的外延膜具有较高的结晶质量,且随着生长时间的延长,外延膜的结晶质量有所提高.β—BBO薄膜呈C轴高度择优取向,薄膜的双晶摇摆曲线半峰宽值FWHM仅为676.6”,表明β-BBO薄膜较好的结晶质量;在不具备相位匹配的条件下,β—BBO外延膜也能够实现二次谐波输出.