960 resultados para lattice parameter
Resumo:
Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.
Resumo:
What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
A new two-parameter integrable model with quantum superalgebra U-q[gl(3/1)] symmetry is proposed, which is an eight-state fermions model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.
Resumo:
Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.
Resumo:
A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
This work addresses the question of whether it is possible to define simple pairwise interaction terms to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice model system one can calculate exact free energies by exhaustive enumeration. A series of approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy terms. Approximating the true free energy with pairwise interactions gives a poor fit with little transferability between systems of different size. Adding extra artificial terms to the approximation yields better fits, but does not improve the ability to generalize from one system size to another. Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free energies. Most usefully, the methodology shows how one can assess the utility of various terms in lattice protein/polymer models. (C) 2001 American Institute of Physics.
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.