861 resultados para lateral bipolar junction transistor (BJT)
Resumo:
A key question in neuroscience is how memory is selectively allocated to neural networks in the brain. This question remains a significant research challenge, in both rodent models and humans alike, because of the inherent difficulty in tracking and deciphering large, highly dimensional neuronal ensembles that support memory (i.e., the engram). In a previous study we showed that consolidation of a new fear memory is allocated to a common topography of amygdala neurons. When a consolidated memory is retrieved, it may enter a labile state, requiring reconsolidation for it to persist. What is not known is whether the original spatial allocation of a consolidated memory changes during reconsolidation. Knowledge about the spatial allocation of a memory, during consolidation and reconsolidation, provides fundamental insight into its core physical structure (i.e., the engram). Using design-based stereology, we operationally define reconsolidation by showing a nearly identical quantity of neurons in the dorsolateral amygdala (LAd) that expressed a plasticity-related protein, phosphorylated mitogen-activated protein kinase, following both memory acquisition and retrieval. Next, we confirm that Pavlovian fear conditioning recruits a stable, topographically organized population of activated neurons in the LAd. When the stored fear memory was briefly reactivated in the presence of the relevant conditioned stimulus, a similar topography of activated neurons was uncovered. In addition, we found evidence for activated neurons allocated to new regions of the LAd. These findings provide the first insight into the spatial allocation of a fear engram in the LAd, during its consolidation and reconsolidation phase.
Resumo:
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram. © 2011 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Resumo:
Pavlovian auditory fear conditioning involves the integration of information about an acoustic conditioned stimulus (CS) and an aversive unconditioned stimulus in the lateral nucleus of the amygdala (LA). The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE), regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased toward the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance toward the faster but more primitive subcortical input
Resumo:
The galvanic replacement of isolated nanostructures of copper and silver on conducting supports as well as continuous films of copper with gold is reported. The surface morphology was characterized by scanning electron microscopy and the replacement with gold was confirmed by EDX analysis. It was found that lateral charge propagation during the replacement reaction had a significant effect in all cases. For the isolated nanostructures the deposition of gold was observed not only at the sacrificial template but also at the surrounding unmodified areas of the conducting substrate. In the case of copper films the role of lateral charge propagation was also confirmed by connecting it to an ITO electrode through an external circuit upon which gold deposition was also observed to occur. Interestingly, by inhibiting the rate of charge propagation, through the introduction of a series resistor, the morphology of gold on the copper substrate could be changed from discrete surface decoration with cube like nanoparticles to a more porous rough surface.
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.
Resumo:
Background Adenocarcinoma of the esophagogastric junction (AEG) as described by Siewert et al. is classified as one entity in the latest (7th Edition) American Joint Cancer Committee/International Union Against Cancer (AJCC/UICC) manual, compared with the previous mix of esophageal and gastric staging systems. The origin of AEG tumors, esophageal or gastric, and their biology remain controversial, particularly for AEG type II (cardia) tumors. Methods We adapted a large prospective database (n = 520: 180 type I, 182 type II, 158 type III) to compare AEG tumors under the new TNM system Pathological variables associated with prognosis were compared (pT, pN, stage, differentiation, R status, lymphovascular invasion, perineural involvement, number of positive nodes, percent of positive nodes, and tumor length), as well as overall survival. Results Compared with AEG type I tumors, type II and type III tumors had significantly (p\0.05) more advanced pN stages, greater number and percentage of positive nodes, poorer differentiation, more radial margin involvement, and more perineural invasion. In AEG type I, 14/180 patients (8%) had[6 involved nodes (pN3), compared with 16 and 30% of patients classified type II and III, respectively. Median survival was significantly (p = 0.03) improved for type I patients (38 months) compared with those with tumors classified as type II (28 months) and type III (24 months). In multivariate analysis node positivity and pN staging but not AEG site had an impact on survival. Conclusions In this series AEG type I is associated with more favorable pathologic features and improved outcomes compared with AEG type II and III. This may reflect earlier diagnosis, but an alternative possibility, that type I may be a unique paradigm with more favorable biology, requires further study. © Société Internationale de Chirurgie 2010.
On the advanced analysis of steel frames allowing for flexural, local and lateral-torsional buckling
Resumo:
Detailed procedure for second-order analysis has been coded in the newest Eurocode 3 and the Hong Kong steel code (2005). The effective length method has been noted to be inapplicable to analysis of shallow domes of imperfect members exhibiting snap-through buckling, to portals with leaning columns and others. On the other hand, the advanced analysis is not limited to buckling design of these structures. This paper demonstrates its application to the design of a simple plane sway portal and a three diminsional non-sway steel building. The results by the advanced analysis and the first-order linear analysis are compared and the technique for practical second-order analysis steel structures is described. It is observed that the use of a straight element by itself cannot model the buckling resistance of columns governed by different buckling curves for hot-rolled and cold-formed sections of various shapes like I, H, hollow etc. Also the curvature of the conventional cubic Hermite element is not varied by the external axial force and thus it cannot simulate the response of a buckling column. Thus its use for second-order analysis is basically unacceptable. A technique for additional checking of beams undergoing lateral-torsional buckling is also suggested making the advanced analysis a complete design tool for conventional steel frames.
Resumo:
This research is carried out by using finite element modelling of building prototypes with three different layouts (rectangular, octagonal and L-shaped) for three different heights (98.0 m, 147.0 m and 199.5 m) for the optimization of lateral load-resisting systems in composite high-rise buildings. Variations of lateral bracings (different number and varied placement along model height of belt-truss and outrigger floors) with RCC (reinforced cement concrete) core wall are used in composite high-rise building models. Prototypes of composite buildings are analysed for dynamic wind and seismic loads. The effects on serviceability (deflection and frequency) of models are studied and conclusions are deduced.
Resumo:
Synaptic changes at sensory inputs to the dorsal nucleus of the lateral amygdala (LAd) play a key role in the acquisition and storage of associative fear memory. However, neither the temporal nor spatial architecture of the LAd network response to sensory signals is understood. We developed a method for the elucidation of network behavior. Using this approach, temporally patterned polysynaptic recurrent network responses were found in LAd (intra-LA), both in vitro and in vivo, in response to activation of thalamic sensory afferents. Potentiation of thalamic afferents resulted in a depression of intra-LA synaptic activity, indicating a homeostatic response to changes in synaptic strength within the LAd network. Additionally, the latencies of thalamic afferent triggered recurrent network activity within the LAd overlap with known later occurring cortical afferent latencies. Thus, this recurrent network may facilitate temporal coincidence of sensory afferents within LAd during associative learning.
Resumo:
Changes in dendritic spine number and shape are believed to reflect structural plasticity consequent to learning. Previous studies have strongly suggested that the dorsal subnucleus of the lateral amygdala is an important site of physiological plasticity in Pavlovian fear conditioning. In the present study, we examined the effect of auditory fear conditioning on dendritic spine numbers in the dorsal subnucleus of the lateral amygdala using an immunolabelling procedure to visualize the spine-associated protein spinophilin. Associatively conditioned rats that received paired tone and shock presentations had 35% more total spinophilin-immunoreactive spines than animals that had unpaired stimulation, consistent with the idea that changes in the number of dendritic spines occur during learning and account in part for memory.
Resumo:
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Resumo:
Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.