958 resultados para laser crystal
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
We report here the growth of epitaxial Co metal thin film on c-plane sapphire by pulsed laser deposition (RD) using Co:ZnO target utilizing the composition inhomogeneity of the corresponding plasma. Two distinct plasma composition regions have been observed using heavily alloyed Co0.6Zn0.4O target. The central and intense region of the plasma grows Co:ZnO film; the extreme tail grows only Co metal with no trace of either ZnO or Co oxide In between the two extremes, mixed phases (Co +Co-oxides +Co:ZnO) were observed. The Co metal thin film grown in this way shows room temperature ferromagnetism with large in plane magnetization similar to 1288 emu cm(-3) and a coerciviLy of similar to 230 Oe with applied field parallel to the film-substrate interface. Carrier density of the film is similar to 10(22) cm(-3). The film is epiLaxial single phase Co metal which is confirmed by both X-ray diffraction and transmission electron microscopy characierizaLions. Planar Hall Effect (PHE) and Magneto Optic Kerr Effect (MOKE) measurements confirm that the film possesses similar attributes of Co metal. The result shows that the epiLaxial Co metal thin film can be grown from its oxides in the PLD. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.
Resumo:
Optimised ultrafast laser ablation can result in almost complete ionisation of the target material and the formation of a high velocity plasma jet. Collisions with the ambient gas behind the shock front cools the material resulting in the formation of mainly spherical, single crystal nanoscale particles in the condensate. This work characterises the nanoscale structures produced by the ultrafast laser interactions in He atmospheres at STP with Ni and Al. High resolution transmission electron microscopy was employed to study the microstructure of the condensates and to classify the production of particles forms as a function of the illumination conditions.
Resumo:
We report on spatial pattern formation, and appearances of 'optical bullet holes' in single-mode microcavities that are filled with liquid-crystals, when pumped above the cavity resonance frequency. These phenomena only occur beyond the bistability threshold. ©2002 Optical Society of America.
Resumo:
A new thermoplastic-photoconductor laser holographic recording system has been used for real-time and in situ observation of alpha-LiIO3 crystal growth. The influence of crystallization-driven convection on the concentration stratification in solution has been studied under gravity field. It is found that the stratification is closely related to the seed orientation of alpha-LiIO3 crystal. When the optical axis of crystal seed C is parallel to the gravity vector g, the velocity of the concentration stratification is two times larger than that in the case of C perpendicular-to g. It needs 40 h for the crystalline system of alpha-LiIO3 to reach stable concentration distribution (expressed as tau) at 47.6-degrees-C. The time tau is not sensitive to the seed orientation. Our results provide valuable data for designing the crystal growth experiments ia space.
Resumo:
Space-resolved spectra of line-shaped laser-produced magnesium plasmas in the normal direction of the target have been obtained using a pinhole crystal spectrograph. These spectra are treated by a spectrum analyzing code for obtaining the true spectra and fine structures of overlapped lines. The spatial distributions of electron temperature and density along the normal direction of the target surface have been obtained with different spectral diagnostic techniques. Especially, the electron density plateaus beyond the critical surface in line-shaped magnesium plasmas have been obtained with a fitting technique applied to the Stark-broadened Ly-alpha wings of hydrogenic ions. The difference of plasma parameters between those obtained by different diagnostic techniques is discussed. Other phenomena, such as plasma satellites, population inversion, etc., which are observed in magnesium plasmas, are also presented.
Resumo:
A Nd:glass regenerative amplifier has been set up to generate the pumping pulse with variable pulse width for an optical parametric chirped-pulse amplification (OPCPA) laser system. Each pulse of the pulse train from a cw self-mode-locking femtosecond Ti:sapphire oscillator is stretched to approximate to300 ps at 1062 nm to be split equally and injected into a nonlinear crystal and the Nd:glass regenerative amplifier, as the chirped signal pulse train and the seed pulse train of the pumping laser system, respectively. By adjusting the cavity length of the regenerative amplifier directly, the width of amplified pulse could be varied continuously from approximate to300 ps to approximate to3 ns. The chirped signal pulse for the OPCPA laser system and the seed pulse for the pumping laser system come from the same oscillator, so that the time jitter between the signal pulse and the pumping pulse in optical parametric amplification stages could be <10 ps. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.
Resumo:
An optical parametric chirped-pulse amplification system is demonstrated to provide 32.9% pump-to-signal conversion efficiency . Special techniques are used to make the signal and pump pulses match with each other in both spectral and temporal domains. The broadband 9.5-mJ pulses are produced at the repetition rate of 1 Hz with the gain of over 1.9 x 10(8). The output energy fluctuation of 7.8% is achieved for the saturated amplification process against the pump fluctuation of 10%.
Resumo:
We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modi. cation of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.
Resumo:
The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.
Resumo:
Effective diode-pumped cw tunable laser action of a new alloyed crystal Yb:Gd(2(1-)x) Y2xSiO5 (Yb:GYSO, x = 0.5) is demonstrated for the first time. The alloyed crystal retains excellent laser properties of Gd2SiO5 (GSO), as well as the favorable growth properties and the desirable physical of Y2SiO5 (YSO). With a 5-at.% Yb: GYSO sample, we achieved 2.44 W output power at 1081.5 nm and a slope efficiency of 57%. And its laser wavelength could be tuned from 1030nm to 1089 nm. (c) 2006 Optical Society of America.