967 resultados para laser ablation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study has been carried out to understand the influence of ambient gases on the dynamics of laser-blow-off plumes of multi-layered LiF–C thin film. Plume images at various time intervals ranging from 100 to 3000 ns have been recorded using an intensified CCD camera. Enhancement in the plume intensity and change in size and shape occurs on introducing ambient gases and these changes are highly dependent on the nature and composition of the ambient gas used. Velocity of the plume was found to be higher in helium ambient whereas intensity enhancement is greater in argon environment. The plume shapes have maximum size at 10−2 and 10−1 Torr of Ar and He pressures, respectively. As the background pressure increases further (>10−2 Torr: depending on the nature of gas), the plume gets compressed/focused in the lateral direction. Internal structure formation and turbulences are observed at higher pressures (>10−1 Torr) in both ambient gases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. Purpose: To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Methods: Sixty human third molars were employed to obtain discs (congruent to 1 mm thick) that were randomly assigned to six groups (n = 10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm. and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Results: Laser irradiation at 11 and 12 min provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Conclusions: Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this clinical study, we proposed to observe the efficacy of the treatment of squamous cell carcinoma of the tongue (SCCT) by carbon dioxide (CO2) laser surgery. Twelve patients with SCCT were treated with excisional surgery using the CO2 laser with a spot size of 0.8 mm, 10 W, power density of 2.5 W/cm(2) in continuous mode, and under constant vacuum removal of the plume. The post surgical clinical evaluations were done every day until the sutures were removed and then every 7 days up to 1 month postoperatively. Subjects were re-examined quarterly until the fifth year post surgery. After 5 yr of follow-up for all subjects, there was no recurrence of the SCCT at the involved sites. The functional and aesthetic results observed were excellent. It is concluded that CO2 laser ablation of SCCT is an extremely useful surgical technique that can provide a clean field and is capable of providing surgical results consistent with accepted principles of oncological surgery. (C) 2012 Laser Institute of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Indium-tin oxide nanostructures were deposited by excimer laser ablation in a nitrogen atmosphere using catalyst-free oxidized silicon substrates at 500 degrees C. Up to 1 mbar, nanowires grew by the vapor-liquid-solid (VLS) mechanism, with the amount of liquid material decreasing as the deposition pressure increased. The nanowires present the single-crystalline cubic bixbyite structure, oriented < 100 >. For the highest pressure used, pyramids were formed and no sign of liquid material could be observed, indicating that these structures grew by a vapor-solid mechanism. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small lesions located in the skin might be treated using the laser system. The purpose of this is to report the therapy of benign eyelid tumors using argon laser. Forty-four benign eyelid tumors were treated using argon blue-green laser with spot size of 500 μm, power from 1000 to 1200 mW and 0.3 second exposure time. The eyelid tumors were located mainly in the upper eyelid (65.9%) and the skin tag was the most frequent treated lesion (43.2%). The average number of laser shots to treat the lesions was 165. There was not observed any complication and all patients were satisfied with the results. The authors are considering the argon laser a benefit therapeutic method to treat benign tumors located in the eyelids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)