930 resultados para isochronous resonances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic moments of the low-lying spin-parity J(P) = 1/2(-), 3/2(-) Lambda resonances, like, for example, Lambda(1405) 1/2(-), Lambda(1520) 3/2(-), as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several extensions of the standard model predict the existence of new neutral spin-1 resonances associated with the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L = 1.02 fb(-1)) and CMS (with integrated luminosity of L = 1.55 fb(-1)) on the production of W+W- pairs through the process pp --> l(+)l(-)' is not an element of(T), we place model independent bounds on these new vector resonances masses, couplings, and widths. Our analyses show that the present data exclude new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models with a specific example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two parametrically-induced phenomena are addressed in the context of a double pendulum subject to a vertical base excitation. First, the parametric resonances that cause the stable downward vertical equilibrium to bifurcate into large-amplitude periodic solutions are investigated extensively. Then the stabilization of the unstable upward equilibrium states through the parametric action of the high-frequency base motion is documented in the experiments and in the simulations. It is shown that there is a region in the plane of the excitation frequency and amplitude where all four unstable equilibrium states can be stabilized simultaneously in the double pendulum. The parametric resonances of the two modes of the base-excited double pendulum are studied both theoretically and experimentally. The transition curves (i.e., boundaries of the dynamic instability regions) are constructed asymptotically via the method of multiple scales including higher-order effects. The bifurcations characterizing the transitions from the trivial equilibrium to the periodic solutions are computed by either continuation methods and or by time integration and compared with the theoretical and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a stationary electrostatic wave. We show that a pulsed wave produces an infinite number of perturbing terms with the same winding number. The perturbation coupling alters the number of island chains as a function of the parameters of the wave. We also observe that the number of chains in is always even if the number of islands in each chain is odd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical resonances of metallic nanoparticles placed at nanometer distances from a metal plane were investigated. At certain wavelengths, these “sphere-on-plane” systems become resonant with the incident electromagnetic field and huge enhancements of the field are predicted localized in the small gaps created between the nanoparticle and the plane. An experimental architecture to fabricate sphere-on-plane systems was successfully achieved in which in addition to the commonly used alkanethiols, polyphenylene dendrimers were used as molecular spacers to separate the metallic nanoparticles from the metal planes. They allow for a defined nanoparticle-plane separation and some often are functionalized with a chromophore core which is therefore positioned exactly in the gap. The metal planes used in the system architecture consisted of evaporated thin films of gold or silver. Evaporated gold or silver films have a smooth interface with their substrate and a rougher top surface. To investigate the influence of surface roughness on the optical response of such a film, two gold films were prepared with a smooth and a rough side which were as similar as possible. Surface plasmons were excited in Kretschmann configuration both on the rough and on the smooth side. Their reflectivity could be well modeled by a single gold film for each individual measurement. The film has to be modeled as two layers with significantly different optical constants. The smooth side, although polycrystalline, had an optical response that was very similar to a monocrystalline surface while for the rough side the standard response of evaporated gold is retrieved. For investigations on thin non-absorbing dielectric films though, this heterogeneity introduces only a negligible error. To determine the resonant wavelength of the sphere-on-plane systems a strategy was developed which is based on multi-wavelength surface plasmon spectroscopy experiments in Kretschmann-configuration. The resonant behavior of the system lead to characteristic changes in the surface plasmon dispersion. A quantitative analysis was performed by calculating the polarisability per unit area /A treating the sphere-on-plane systems as an effective layer. This approach completely avoids the ambiguity in the determination of thickness and optical response of thin films in surface plasmon spectroscopy. Equal area densities of polarisable units yielded identical response irrespective of the thickness of the layer they are distributed in. The parameter range where the evaluation of surface plasmon data in terms of /A is applicable was determined for a typical experimental situation. It was shown that this analysis yields reasonable quantitative agreement with a simple theoretical model of the sphere-on-plane resonators and reproduces the results from standard extinction experiments having a higher information content and significantly increased signal-to-noise ratio. With the objective to acquire a better quantitative understanding of the dependence of the resonance wavelength on the geometry of the sphere-on-plane systems, different systems were fabricated in which the gold nanoparticle size, type of spacer and ambient medium were varied and the resonance wavelength of the system was determined. The gold nanoparticle radius was varied in the range from 10 nm to 80 nm. It could be shown that the polyphenylene dendrimers can be used as molecular spacers to fabricate systems which support gap resonances. The resonance wavelength of the systems could be tuned in the optical region between 550 nm and 800 nm. Based on a simple analytical model, a quantitative analysis was developed to relate the systems’ geometry with the resonant wavelength and surprisingly good agreement of this simple model with the experiment without any adjustable parameters was found. The key feature ascribed to sphere-on-plane systems is a very large electromagnetic field localized in volumes in the nanometer range. Experiments towards a quantitative understanding of the field enhancements taking place in the gap of the sphere-on-plane systems were done by monitoring the increase in fluorescence of a metal-supported monolayer of a dye-loaded dendrimer upon decoration of the surface with nanoparticles. The metal used (gold and silver), the colloid mean size and the surface roughness were varied. Large silver crystallites on evaporated silver surfaces lead to the most pronounced fluorescence enhancements in the order of 104. They constitute a very promising sample architecture for the study of field enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo lavoro di tesi è stato svolto uno studio analitico sul modello di Hubbard esteso unidimensionale al fine di osservare la presenza di eventuali risonanze che possano dare origine alla formazione di stati legati di due particelle. L'esistenza di uno stato legato stabile ha suscitato grande interesse negli ultimi anni, sia in ambito teorico che sperimentale, poichè è alla base di molti fenomeni che vengono osservati nei sistemi a molti corpi a basse temperature, come il BCS-BEC crossover. Pertanto si è ritenuto utile studiare il problema a due corpi nel modello di Hubbard esteso, che in generale non è integrabile. Il modello considerato contiene interazioni a primi e secondi vicini, in aggiunta all'interazione di contatto presente nel modello di Hubbard. Il problema è stato indagato analiticamente attraverso il Bethe ansatz, che consente di trovare tutti gli autovalori e le autofunzioni dell'Hamiltoniana. L'ansatz di Bethe sulla funzione d'onda è stato generalizzato per poter tener conto dei termini di interazione a più lungo raggio rispetto all'interazione di contatto. Si trova che, in questo modello, nel limite termodinamico, possono avvenire delle risonanze (o quasi-risonanze) in cui la lunghezza di scattering diverge, contrariamente a quanto avviene nel modello di Hubbard. Tale fenomeno si verifica quando il livello energetico discreto degli stati legati “tocca” la banda di scattering. Inoltre, con l'aggiunta di nuovi termini di interazione emergono nuovi stati legati. Nel caso in esame, si osservano due famiglie di stati legati, se lo spin totale delle due particelle è 1, e tre famiglie di stati legati, se lo spin totale è 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.