927 resultados para iron accumulation, maternal effect
Resumo:
In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration
Resumo:
The consumption of excess alcohol in patients with liver iron storage diseases, in particular the iron-overload disease hereditary haemochromatosis (HH), has important clinical consequences. HH, a common genetic disorder amongst people of European descent, results in a slow, progressive accumulation of excess hepatic iron. If left untreated, the condition may lead to fibrosis, cirrhosis and primary hepatocellular carcinoma. The consumption of excess alcohol remains an important cause of hepatic cirrhosis and alcohol consumption itself may lead to altered iron homeostasis. Both alcohol and iron independently have been shown to result in increased oxidative stress causing lipid peroxidation and tissue damage. Therefore, the added effects of both toxins may exacerbate the pathogenesis of disease and impose an increased risk of cirrhosis. This review discusses the concomitant effects of alcohol and iron on the pathogenesis of liver disease. We also discuss the implications of co-existent alcohol and iron in end-stage liver disease.
Resumo:
Pregnant rats were given control (46 mg iron/kg, 61 mg zinc/kg), low-Zn (6.9 mg Zn/kg) or low-Zn plus Fe (168 mg Fe/kg) diets from day 1 of pregnancy. The animals were allowed to give birth and parturition times recorded. Exactly 24 h after the end of parturition the pups were killed and analysed for water, fat, protein, Fe and Zn contents and the mothers' haemoglobin (Hb) and packed cell volume (PCV) were measured. There were no differences in weight gain or food intakes throughout pregnancy. Parturition times were similar (mean time 123 (SE 15) min) and there were no differences in the number of pups born. Protein, water and fat contents of the pups were similar but the low-Zn Fe-supplemented group had higher pup Fe than the low-Zn unsupplemented group, and the control group had higher pup Zn than both the low-Zn groups. The low-Zn groups had a greater incidence of haemorrhaged or deformed pups, or both, than the controls. Pregnant rats were given diets of adequate Zn level (40 mg/kg) but with varying Fe:Zn (0.8, 1.7, 2.9, 3.7). Zn retention from the diet was measured using 65Zn as an extrinsic label on days 3, 10 and 17 of pregnancy with a whole-body gamma-counter. A group of non-pregnant rats was also included as controls. The 65Zn content of mothers and pups was measured 24-48 h after birth and at 14, 21 and 24 d of age. In all groups Zn retention was highest from the first meal, fell in the second meal and then rose in the third meal of the pregnant but not the non-pregnant rats. There were no differences between the groups given diets of varying Fe:Zn level. Approximately 25% of the 65Zn was transferred from the mothers to the pups by the time they were 48 h old, and a further 17% during the first 14 d of lactation. The pup 65Zn content did not significantly increase after the first 20 d of lactation but the maternal 65Zn level continued to fall gradually.
Resumo:
1. Female Wistar rats were given an adequate-zinc (60 μg/g) or low-Zn (7 μg/g) diet for a minimum of 2 weeks and then mated. They were then either continued on the same diets (+Zn –Fe or –Zn –Fe) or given similar diets supplemented with four times the normal level of iron (+Zn + Fe or –Zn + Fe). The day before parturition they were killed and the fetuses removed and analysed. 2. There were no differences in numbers of fetuses or the number of resorption sites. In the absence of Fe supplementation, the mean fetal wet weight was significantly less (P < 0.05) in the low-Zn group but there was no effect of Zn in the two Fe-supplemented groups. The addition of Fe significantly decreased (P < 0.05) the mean fetal wet weight in the adequate-Zn groups but had no effect in the low-Zn groups. There were no differences in fetal dry weight, fat, protein or DNA content. Both Fe-supplemented groups produced fetuses of higher Fe concentration (P < 0.01), and mothers with higher bone Fe-concentration (P < 0.01) compared with the non-supplemented groups. The low-Zn groups produced fetuses of lower Zn concentration (P < 0,001) than the adequate-Zn groups but there was no effect on maternal bone Zn concentration. 3. It was concluded that Fe-supplements did not adversely affect fetal growth from mothers given a low-Zn diet, but the addition of Zn to the unsupplemented diet increased fetal wet weight. These findings were not accompanied by any other differences in fetal composition or dry weight, and do not therefore lend support to the suggestion of an Fe-Zn interaction.
Resumo:
FAPESP n. 03/04061-2
Resumo:
The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.
Resumo:
Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.
Resumo:
It is known that some metal salts can inhibit matrix metalloproteinase (MMP) activity, but the effect of iron has not been tested yet. On the other hand, it has recently been suggested that MMP inhibition might influence dentine erosion. Based on this, the aims of this study were: (1) to test in vitro the effect of FeSO(4) on MMP-2 and -9 activity, and (2) to evaluate in situ the effect of FeSO(4) gel on dentine erosion. MMP-2 and -9 activities were analysed zymographically in buffers containing FeSO(4) in concentrations ranging between 0.05 and 1.5 mmol/l or not. Volunteers (n = 10) wore devices containing bovine dentine blocks (n = 60) previously treated with the following gel treatments: FeSO(4) (1 mmol/l FeSO(4)), F (NaF 1.23%; positive control) and placebo (negative control). The gels were applied once and removed after 1 min. Erosion was performed extraorally with Coca-Cola 4 times per day for 5 min over 5 days. Dentine wear was evaluated by profilometry. The data were analysed by Kruskal-Wallis and Dunn`s tests (p < 0.05). FeSO(4) inhibited both MMP-2 (IC(50) = 0.75 mmol/l) and MMP-9 (IC(50) = 0.50 mmol/l) activities. In the in situ experiment, the mean wear (+/- SD) found for the F gel (0.79 8 +/- 0.08 mu m) was significantly reduced in more than 50% when compared to the placebo gel (1.77 +/- 0.33 mu m), but the FeSO(4) gel completely inhibited the wear (0.05 +/- 0.02 mu m). Since FeSO(4) was able to inhibit MMP in vitro, it is possible that the prevention of dentine wear by the FeSO(4) gel in situ might be due to MMP inhibition, which should be investigated in further studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background: The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods: To standardize the blocks (n = 80), specimens (4 x 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO(4)) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola (R) (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results: The mean wear (+/- SD, mu m) was C: 0.94 +/- 0.22; F: 0.55 +/- 0.12; Fe: 0.49 +/- 0.11 and F + Fe: 0.55 +/- 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions: The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge.
Resumo:
Objective: The aim of this study was to evaluate, in vitro, the effect of an experimental varnish containing iron on the dissolution of bovine enamel by carbonated beverage. Methods: Eighty specimens were randomly allocated to four groups (n = 20 per group), according to the following treatments: Fe varnish (FeV, 10 mmoL/L Fe), F varnish (FV, 2.71% F), placebo varnish (PV) and control (not treated, NT). The varnishes were applied in a thin layer and removed after 6 h. Then, the samples were submitted to six cycles, alternating re- and demineralisation (only 1 day). Demineralisation was performed with the beverage Coca-Cola (R) (10 min, 30 mL/block) and remineralisation with artificial saliva for I h. In order to determine the amount of enamel dissolved, the wear was analysed by profilometry. Data were analysed by ANOVA and Tukey`s test (p < 0.05). Results: The mean wear (+/- S.E.) was significantly lesser for the FeV (0.451 +/- 0.018 mu m) when compared to the other treatments. The FV caused significantly less wear (0.554 +/- 0.022 mu m) when compared to PV (0.991 +/- 0.039 mu m) and NT (1.014 +/- 0.033), which did not significantly differ from each other. Conclusions: The results suggest that the iron varnish can interfere with the dissolution of dental enamel in the presence of acidic beverages. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Heterozygotes for the C282Y mutation of the HFE gene may have altered hematology indices and higher iron stores than wild-type subjects. Methods: We performed a cross-sectional analysis of 1488 females and 1522 males 20-79 years of age drawn from the Busselton (Australia) population study to assess the effects of HFE genotype, age, gender, and lifestyle on serum iron and hematology indices. Results: Male C282Y heterozygotes had increased transferrin saturation compared with the wild-type genotype. Neither male nor female heterozygotes had significantly increased ferritin values compared with the wild-type genotype. Younger (20-29 years) wild-type males, but not heterozygous males, had significantly lower ferritin values than wild-type males in the older age groups. Compound heterozygous subjects had increased means for serum iron, transferrin saturation, corpuscular volume, and corpuscular hemoglobin compared with the wild-type genotype, and the males also had increased ferritin values (medians 323 vs 177 mug/L; P = 0.003). In both male and female wild-type subjects, an increased body mass index was associated with decreased serum iron and transferrin saturation and increased ferritin values. There was a significant increase in ferritin concentrations in both genders with increasing frequency of red meat consumption above a baseline of 1-2 times per week and alcohol intakes >10 g/day. Conclusions: Male C282Y heterozygotes had significantly increased transferrin saturation values. Compound heterozygous (C282Y/H63D) subjects formed a separate category of C282Y heterozygotes in whom both iron and red cell indices were significantly increased compared with the wild-type genotype. (C) 2001 American Association for Clinical Chemistry.
Resumo:
The use of maternal epidural analgesia in labor may be associated with nonreassuring fetal heart rate (FHR) patterns. Fetal oxygen saturation (FSpO(2)) monitoring may improve assessment of fetal well-being during this time. Mean FSpO(2) values were compared over seven 5-minute epochs: 5 minutes prior to an epidural event (combined insertion of epidural/top-up epidural analgesia and infusion pump bolus), to 30 minutes following the event, including possible effects of maternal position and FHR pattern on FSpO(2) values. Mean FSpO(2) values were significantly different between the 5 minutes prior (49.5%) versus 16-20 minutes (44.3%, p