687 resultados para intertidal macroalgae
Resumo:
Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS.
Resumo:
The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.
Resumo:
With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Shorebirds have declined severely across the East Asian-Australasian Flyway. Many species rely on intertidal habitats for foraging, yet the distribution and conservation status of these habitats across Australia remain poorly understood. Here, we utilised freely available satellite imagery to produce the first map of intertidal habitats across Australia. We estimated a minimum intertidal area of 9856 km**2, with Queensland and Western Australia supporting the largest areas. Thirty-nine percent of intertidal habitats were protected in Australia, with some primarily within marine protected areas (e.g. Queensland) and others within terrestrial protected areas (e.g. Victoria). In fact, three percent of all intertidal habitats were protected both by both marine and terrestrial protected areas. To achieve conservation targets, protected area boundaries must align more accurately with intertidal habitats. Shorebirds use intertidal areas to forage and supratidal areas to roost, so a coordinated management approach is required to account for movement of birds between terrestrial and marine habitats. Ultimately, shorebird declines are occurring despite high levels of habitat protection in Australia. There is a need for a concerted effort both nationally and internationally to map and understand how intertidal habitats are changing, and how habitat conservation can be implemented more effectively.
Resumo:
We surveyed macroalgae at Hansneset, Blomstrand in Kongsfjorden, Svalbard, down to 30 m depth between 1996 and 1998. In total, 62 species were identified: 16 Chlorophyta, 25 Phaeophyceae, and 21 Rhodophyta. The majority of species (53.5%) belonged to the Arctic cold-temperate group, followed in frequency by species distributed from the Arctic to the warm-temperate region (25.9%). Four endemic Arctic species (Laminaria solidungula, Acrosiphonia flagellata, A. incurva, and Urospora elongata) were found. Two species (Pogotrichum filiforme and Mikrosyphar polysiphoniae) were new to Svalbard. Chlorophyta, Phaeophyceae, and Rhodophyta extended from the eulittoral zone down to 11, 21, and >30 m depths with maximum biomasses at 1-5 m, 5-10 m, and 5-30 m depths, respectively. Annual and pseudoperennial species had highest biomasses in the upper 5 m, while perennials were distributed deeper. The highest biomass (8600 g/m**2 wet weight) at 5 m depth comprised mainly L. digitata, Saccorhiza dermatodea, Alaria esculenta, and Saccharina latissima. The biogeographic composition of macroalgae at Hansneset was rather similar to that of northeastern Greenland, but different from that of northern Norway, which has a higher proportion of temperate species. Climate warming and ship traffic may extend some of the distribution ranges of macroalgae from mainland Norway to Svalbard.
Resumo:
Os Oceanos representam o maior sistema de suporte de vida sendo a uma grande fonte de riqueza, oportunidade e abundância. No entanto, a humanidade tem levado este ecossistema ao seu limite com crescentes níveis de poluição e outras pressões antropogénicas. A introdução de espécies não-nativas é reconhecida como uma das maiores ameaças à biodiversidade e a segunda maior causa de extinção das espécies. A macroalga vermelha Asparagopsis armata é uma espécie invasora originária da Austrália e que atualmente apresenta uma ampla distribuição em todo o globo devido à sua estratégia oportunista, ausência de predadores e altas taxas de crescimento. Uma questão emergente está relacionada com a capacidade destas espécies invasoras produzirem grandes quantidades de metabolitos halogenados potencialmente tóxicos. Esta característica pode representar um perigo adicional para o equilíbrio ecológico da comunidade invadida. O presente trabalho teve como objetivo avaliar o potencial ecotoxicológico dos exsudatos de A. armata usando um gastrópode, Gibbula umbilicalis, como organismo modelo. A macroalga recolhida na costa de Peniche (Portugal) foi colocada em tanques no laboratório, durante 12 h, sendo depois o meio recolhido e filtrado para ensaios posteriores com os exsudatos da alga. No ensaio agudo, observou-se a mortalidade de G. umbilicalis que foi exposta a crescentes diluições do exsudato durante 96 h. Adicionalmente, os gastrópodes foram expostos a concentrações não letais do exsudato e analisou-se as respostas bioquímicas recorrendo a biomarcadores relacionados com destoxificação, defesas antioxidantes, danos oxidativos, danos neurotóxicos e metabolismo energético. Os resultados revelaram que os exsudatos de A. armata afetaram significativamente a sobrevivência dos organismos expostos com uma CL50 96h de 5.03% de exsudato da alga. A exposição aos exsudatos da alga também resultou em efeitos bioquímicos e metabólicos ao nível subcelular com resultados significativos na inibição da glutationa-S-transferase (GST), perda de integridade do ADN e níveis crescentes de atividade da lactato desidrogenase (LDH), dando uma indicação dos mecanismos de toxicidade desta alga marinha. Os níveis mais elevados de danos no ADN ocorreram quando a GST apresentou os níveis mais baixos de atividade e esta mesma atividade aumentou quando os danos no ADN diminuíram, em simultâneo com o aumento dos níveis de atividade da LDH, indicando que as necessidades energéticas aumentam devido à necessidade de sintetizar mais enzima. Conclui-se que a A. armata tem capacidade de libertar substâncias tóxicas que podem ter potenciais impactos no ambiente envolvente. Adicionalmente, as respostas bioquímicas estudadas em G. umbilicalis têm potencial para serem usadas como sinais de aviso na determinação dos efeitos provocados pelos compostos libertados por esta macroalga vermelha.
Resumo:
Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in de Beer et al., (2005, hdl:10013/epic.21375). The sampling was performed during low tide in the middle of the flat, approximately 40 m in the offshore direction from the high water line on October 6, 1999, March 7, 2000, and July 5, 2000. Two parallel cores were collected from each season for molecular analyses. Within 2 h after sampling the sediment cores were sub-sampled and fixed in formaldehyde for FISH analysis. The cells were hybridized, stained with 4',6'-diamidino-2-phenylindole (DAPI) and microscopically counted as described previously [55]. Details of probes and formamide concentrations which were used are shown in further details. Counts are reported as means calculated from 10-15 randomly chosen microscopic fields corresponding to 700-1000 DAPI-stained cells. Values were corrected for the signals counted with the probe NON338. Fluorescence in situ hybridization (FISH)with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0-12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml-1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×10**7 - 1.8×10**8 cells/ml accounting for 3-19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al., (2005, hdl:10013/epic.21375). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores de Beer et al., (2005).
Resumo:
Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.