911 resultados para internet networks
Resumo:
Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.
Resumo:
Network virtualization is a promising technique for building the Internet of the future since it enables the low cost introduction of new features into network elements. An open issue in such virtualization is how to effect an efficient mapping of virtual network elements onto those of the existing physical network, also called the substrate network. Mapping is an NP-hard problem and existing solutions ignore various real network characteristics in order to solve the problem in a reasonable time frame. This paper introduces new algorithms to solve this problem based on 0–1 integer linear programming, algorithms based on a whole new set of network parameters not taken into account by previous proposals. Approximative algorithms proposed here allow the mapping of virtual networks on large network substrates. Simulation experiments give evidence of the efficiency of the proposed algorithms.
Resumo:
The world of communication has changed quickly in the last decade resulting in the the rapid increase in the pace of peoples’ lives. This is due to the explosion of mobile communication and the internet which has now reached all levels of society. With such pressure for access to communication there is increased demand for bandwidth. Photonic technology is the right solution for high speed networks that have to supply wide bandwidth to new communication service providers. In particular this Ph.D. dissertation deals with DWDM optical packet-switched networks. The issue introduces a huge quantity of problems from physical layer up to transport layer. Here this subject is tackled from the network level perspective. The long term solution represented by optical packet switching has been fully explored in this years together with the Network Research Group at the department of Electronics, Computer Science and System of the University of Bologna. Some national as well as international projects supported this research like the Network of Excellence (NoE) e-Photon/ONe, funded by the European Commission in the Sixth Framework Programme and INTREPIDO project (End-to-end Traffic Engineering and Protection for IP over DWDM Optical Networks) funded by the Italian Ministry of Education, University and Scientific Research. Optical packet switching for DWDM networks is studied at single node level as well as at network level. In particular the techniques discussed are thought to be implemented for a long-haul transport network that connects local and metropolitan networks around the world. The main issues faced are contention resolution in a asynchronous variable packet length environment, adaptive routing, wavelength conversion and node architecture. Characteristics that a network must assure as quality of service and resilience are also explored at both node and network level. Results are mainly evaluated via simulation and through analysis.
Resumo:
Wireless Sensor Networks (WSNs) are getting wide-spread attention since they became easily accessible with their low costs. One of the key elements of WSNs is distributed sensing. When the precise location of a signal of interest is unknown across the monitored region, distributing many sensors randomly/uniformly may yield with a better representation of the monitored random process than a traditional sensor deployment. In a typical WSN application the data sensed by nodes is usually sent to one (or more) central device, denoted as sink, which collects the information and can either act as a gateway towards other networks (e.g. Internet), where data can be stored, or be processed in order to command the actuators to perform special tasks. In such a scenario, a dense sensor deployment may create bottlenecks when many nodes competing to access the channel. Even though there are mitigation methods on the channel access, concurrent (parallel) transmissions may occur. In this study, always on the scope of monitoring applications, the involved development progress of two industrial projects with dense sensor deployments (eDIANA Project funded by European Commission and Centrale Adritica Project funded by Coop Italy) and the measurement results coming from several different test-beds evoked the necessity of a mathematical analysis on concurrent transmissions. To the best of our knowledge, in the literature there is no mathematical analysis of concurrent transmission in 2.4 GHz PHY of IEEE 802.15.4. In the thesis, experience stories of eDIANA and Centrale Adriatica Projects and a mathematical analysis of concurrent transmissions starting from O-QPSK chip demodulation to the packet reception rate with several different types of theoretical demodulators, are presented. There is a very good agreement between the measurements so far in the literature and the mathematical analysis.
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
Al giorno d'oggi una pratica molto comune è quella di eseguire ricerche su Google per cercare qualsiasi tipo di informazione e molte persone, con problemi di salute, cercano su Google sintomi, consigli medici e possibili rimedi. Questo fatto vale sia per pazienti sporadici che per pazienti cronici: il primo gruppo spesso fa ricerche per rassicurarsi e per cercare informazioni riguardanti i sintomi ed i tempi di guarigione, il secondo gruppo invece cerca nuovi trattamenti e soluzioni. Anche i social networks sono diventati posti di comunicazione medica, dove i pazienti condividono le loro esperienze, ascoltano quelle di altri e si scambiano consigli. Tutte queste ricerche, questo fare domande e scrivere post o altro ha contribuito alla crescita di grandissimi database distribuiti online di informazioni, conosciuti come BigData, che sono molto utili ma anche molto complessi e che necessitano quindi di algoritmi specifici per estrarre e comprendere le variabili di interesse. Per analizzare questo gruppo interessante di pazienti gli sforzi sono stati concentrati in particolare sui pazienti affetti dal morbo di Crohn, che è un tipo di malattia infiammatoria intestinale (IBD) che può colpire qualsiasi parte del tratto gastrointestinale, dalla bocca all'ano, provocando una grande varietà di sintomi. E' stato fatto riferimento a competenze mediche ed informatiche per identificare e studiare ciò che i pazienti con questa malattia provano e scrivono sui social, al fine di comprendere come la loro malattia evolve nel tempo e qual'è il loro umore a riguardo.
Resumo:
In questo elaborato si descrive l'emergente approccio alle reti, il Software Defined Network, ed i suoi benefici. Successivamente viene preso in considerazione un importante componente di questa nuova architettura: il protocollo OpenFlow; si spiega che cos'è e si elencano i benefici che può apportare ad un'architettura SDN a sostegno di questi vengono mostrati quattro differenti casi d'uso di OF, comparati poi ad altri scenari equivalenti che non usano questo protocollo. Infine si è pensato ad alcuni possibili studi e sviluppi circa quest'architettura.
Resumo:
Resource management is of paramount importance in network scenarios and it is a long-standing and still open issue. Unfortunately, while technology and innovation continue to evolve, our network infrastructure system has been maintained almost in the same shape for decades and this phenomenon is known as “Internet ossification”. Software-Defined Networking (SDN) is an emerging paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire network. This is done by decoupling the network control logic from the underlying physical routers and switches that forward traffic to the selected destination. One mechanism that allows the control plane to communicate with the data plane is OpenFlow. The network operators could write high-level control programs that specify the behavior of an entire network. Moreover, the centralized control makes it possible to define more specific and complex tasks that could involve many network functionalities, e.g., security, resource management and control, into a single framework. Nowadays, the explosive growth of real time applications that require stringent Quality of Service (QoS) guarantees, brings the network programmers to design network protocols that deliver certain performance guarantees. This thesis exploits the use of SDN in conjunction with OpenFlow to manage differentiating network services with an high QoS. Initially, we define a QoS Management and Orchestration architecture that allows us to manage the network in a modular way. Then, we provide a seamless integration between the architecture and the standard SDN paradigm following the separation between the control and data planes. This work is a first step towards the deployment of our proposal in the University of California, Los Angeles (UCLA) campus network with differentiating services and stringent QoS requirements. We also plan to exploit our solution to manage the handoff between different network technologies, e.g., Wi-Fi and WiMAX. Indeed, the model can be run with different parameters, depending on the communication protocol and can provide optimal results to be implemented on the campus network.
Resumo:
Lo streaming è una tecnica per trasferire contenuti multimediali sulla rete globale, utilizzato per esempio da servizi come YouTube e Netflix; dopo una breve attesa, durante la quale un buffer di sicurezza viene riempito, l'utente può usufruire del contenuto richiesto. Cisco e Sandvine, che con cadenza regolare pubblicano bollettini sullo stato di Internet, affermano che lo streaming video ha, e avrà sempre di più, un grande impatto sulla rete globale. Il buon design delle applicazioni di streaming riveste quindi un ruolo importante, sia per la soddisfazione degli utenti che per la stabilità dell'infrastruttura. HTTP Adaptive Streaming indica una famiglia di implementazioni volta a offrire la migliore qualità video possibile (in termini di bit rate) in funzione della bontà della connessione Internet dell'utente finale: il riproduttore multimediale può cambiare in ogni momento il bit rate, scegliendolo in un insieme predefinito, adattandosi alle condizioni della rete. Per ricavare informazioni sullo stato della connettività, due famiglie di metodi sono possibili: misurare la velocità di scaricamento dei precedenti trasferimenti (approccio rate-based), oppure, come recentemente proposto da Netflix, utilizzare l'occupazione del buffer come dato principale (buffer-based). In questo lavoro analizziamo algoritmi di adattamento delle due famiglie, con l'obiettivo di confrontarli su metriche riguardanti la soddisfazione degli utenti, l'utilizzo della rete e la competizione su un collo di bottiglia. I risultati dei nostri test non definiscono un chiaro vincitore, riconoscendo comunque la bontà della nuova proposta, ma evidenziando al contrario che gli algoritmi buffer-based non sempre riescono ad allocare in modo imparziale le risorse di rete.
Resumo:
Since the appearance of downsized and simplified TCP/IP stacks, single nodes from Wireless Sensor Networks (WSNs) have become directly accessible from the Internet with commonly used networking tools and applications (e.g., Telnet or SMTP). However, TCP has been shown to perform poorly in wireless networks, especially across multiple wireless hops. This paper examines TCP performance optimizations based on distributed caching and local retransmission strategies of intermediate nodes in a TCP connection, and proposes extended techniques to these strategies. The paper studies the impact of different radio duty-cycling MAC protocols on the end-to-end TCP performance when using the proposed TCP optimization strategies in an extensive experimental evaluation on a real-world sensor network testbed.