174 resultados para insoluable anodes
Resumo:
Dans l’industrie de l’aluminium, le coke de pétrole calciné est considéré comme étant le composant principal de l’anode. Une diminution dans la qualité du coke de pétrole a été observée suite à une augmentation de sa concentration en impuretés. Cela est très important pour les alumineries car ces impuretés, en plus d’avoir un effet réducteur sur la performance des anodes, contaminent le métal produit. Le coke de pétrole est aussi une source de carbone fossile et, durant sa consommation, lors du processus d’électrolyse, il y a production de CO2. Ce dernier est considéré comme un gaz à effet de serre et il est bien connu pour son rôle dans le réchauffement planétaire et aussi dans les changements climatiques. Le charbon de bois est disponible et est produit mondialement en grande quantité. Il pourrait être une alternative attrayante pour le coke de pétrole dans la fabrication des anodes de carbone utilisées dans les cuves d’électrolyse pour la production de l’aluminium. Toutefois, puisqu’il ne répond pas aux critères de fabrication des anodes, son utilisation représente donc un grand défi. En effet, ses principaux désavantages connus sont sa grande porosité, sa structure désordonnée et son haut taux de minéraux. De plus, sa densité et sa conductivité électrique ont été rapportées comme étant inférieures à celles du coke de pétrole. L’objectif de ce travail est d’explorer l’effet du traitement de chaleur sur les propriétés du charbon de bois et cela, dans le but de trouver celles qui s’approchent le plus des spécifications requises pour la production des anodes. L’évolution de la structure du charbon de bois calciné à haute température a été suivie à l’aide de différentes techniques. La réduction de son contenu en minéraux a été obtenue suite à des traitements avec de l’acide chlorhydrique utilisé à différentes concentrations. Finalement, différentes combinaisons de ces deux traitements, calcination et lixiviation, ont été essayées dans le but de trouver les meilleures conditions de traitement.
Resumo:
Le marché des accumulateurs lithium-ion est en expansion. Cette croissance repose partiellement sur la multiplication des niches d’utilisation et l’amélioration constante de leurs performances. En raison de leur durabilité exceptionnelle, de leur faible coût, de leur haute densité de puissance et de leur fiabilité, les anodes basées sur les titanates de lithium, et plus particulièrement le spinelle Li4Ti5O12, présentent une alternative d’intérêt aux matériaux classiques d’anodes en carbone pour de multiples applications. Leur utilisation sous forme de nanomatériaux permet d’augmenter significativement la puissance disponible par unité de poids. Ces nanomatériaux ne sont typiquement pas contraints dans une direction particulière (nanofils, nanoplaquettes), car ces formes impliquent une tension de surface plus importante et requièrent donc généralement un mécanisme de synthèse dédié. Or, ces nanostructures permettent des réductions supplémentaires dans les dimensions caractéristiques de diffusion et de conduction, maximisant ainsi la puissance disponible, tout en affectant les propriétés habituellement intrinsèques des matériaux. Par ailleurs, les réacteurs continus reposant sur la technologie du plasma thermique inductif constituent une voie de synthèse démontrée afin de générer des volumes importants de matériaux nanostructurés. Il s’avère donc pertinent d’évaluer leur potentiel dans la production de titanates de lithium nanostructurés. La pureté des titanates de lithium est difficile à jauger. Les techniques de quantification habituelles reposent sur la fluorescence ou la diffraction en rayons X, auxquelles le lithium élémentaire se prête peu ou pas. Afin de quantifier les nombreuses phases (Li4Ti5O12, Li2Ti3O7, Li2TiO3, TiO2, Li2CO3) identifiées dans les échantillons produits par plasma, un raffinement de Rietveld fut développé et validé. La présence de γ-Li2TiO3 fut identifiée, et la calorimétrie en balayage différentiel fut explorée comme outil permettant d’identifier et de quantifier la présence de β-Li2TiO3. Différentes proportions entre les phases produites et différents types de morphologies furent observés en fonction des conditions d’opération du plasma. Ainsi, des conditions de trempe réductrice et d’ensemencement en Li4Ti5O12 nanométrique semblent favoriser l’émergence de nanomorphologies en nanofils (associés à Li4Ti5O12) et en nanoplaquette (associées à Li2TiO3). De plus, l’ensemencement et les recuits augmentèrent significativement le rendement en la phase spinelle Li4Ti5O12 recherchée. Les recuits sur les poudres synthétisées par plasma indiquèrent que la décomposition du Li2Ti3O7 produit du Li4Ti5O12, du Li2TiO3 et du TiO2 (rutile). Afin d’approfondir l’investigation de ces réactions de décomposition, les paramètres cristallins du Li2Ti3O7 et du γ-Li2TiO3 furent définis à haute température. Des mesures continues en diffraction en rayon X à haute température furent réalisées lors de recuits de poudres synthétisées par plasma, ainsi que sur des mélanges de TiO2 anatase et de Li2CO3. Celles-ci indiquent la production d’un intermédiaire Li2Ti3O7 à partir de l’anatase et du carbonate, sa décomposition en Li4Ti5O12 et TiO2 (rutile) sur toute la plage de température étudiée, et en Li2TiO3 et TiO2 (rutile) à des températures inférieures à 700°C.
Resumo:
The current project assesses potential molten alloy anodes for Solid Oxide Fuel Cells (SOFC) running on solid waste. A detailed phase diagram study was performed to locate probable anode systems. The molten metal oxide system PbO-Sb2O3 was selected as a possible molten alloy anode for this application. A detailed vapour pressure study of this system was performed. Several cells were fabricated to experimentally assess the electrochemical properties of this system. The work reveals several unexpected limiting features such as the incompatibility between the platinum and the chosen alloy. A second cell was built, this time using rhenium wires instead, preventing such reaction. However, the rhenium wire sublimes under oxidizing conditions (air) and the sealing glass and the chosen alloy system react with each other under long term use. Considering all these issues, a third cell design was conceived, surpassing some obstacles and providing some initial information regarding the electrochemical behaviour. The current project shows that many parameters need to be taken into account to ensure materials compatibility. For the PbOSb2O3 system, the high volatility of Sb2O3 was a serious limitation that can only be addressed through the application of new contact wires or sealing materials and conditions. Nonetheless, the project highlights several other potential systems that can be considered, such as Pb11Ge3O17, Pb3GeO5, Pb5Ge3O11, Bi2CuO4, Bi2PdO4, Bi12GeO20.
Resumo:
Following work exploring the low temperature electrolysis in alkaline media, using graphite consumable anodes, from which syngas was obtained1, laboratory studies have been conducted in acid media pursuing higher efficiency in the production of hydrogen and synthetic fuels. Experiments were conducted in an own designed undivided planar cell with 25 cm2 geometrical area electrodes using a 0.5 M H2SO4 solution with and without Fe(II) additions. Fe2+ oxidizes to Fe3+ at the anode surface. The redox couple Fe3+/ Fe2+ acts as an oxidation mediator not only oxidizing the bulk and detached graphite but also the surface functional groups. The practical experimental potential for graphite oxidation is within the range for the electroxidation of the Fe redox couple giving as a result a 4-fold increase in the amount of produced CO2 at near room temperature, when using 0.025 M FeSO4.
Resumo:
Magnesium (Mg) battery is considered as a promising candidate for the next generation battery technology that could potentially replace the current lithium (Li)-ion batteries due to the following factors. Magnesium possesses a higher volumetric capacity than commercialized Li-ion battery anode materials. Additionally, the low cost and high abundance of Mg compared to Li makes Mg batteries even more attractive. Moreover, unlike metallic Li anodes which have a tendency to develop a dendritic structure on the surface upon the cycling of the battery, Mg metal is known to be free from such a hazardous phenomenon. Due to these merits of Mg as an anode, the topic of rechargea¬ble Mg batteries has attracted considerable attention among researchers in the last few decades. However, the aforementioned advantages of Mg batteries have not been fully utilized due to the serious kinetic limitation of Mg2+ diffusion process in many hosting compounds which is believed to be due to a strong electrostatic interaction between divalent Mg2+ ions and hosting matrix. This serious kinetic hindrance is directly related to the lack of cathode materials for Mg battery that provide comparable electrochemical performances to that of Li-based system. Manganese oxide (MnO2) is one of the most well studied electrode materials due to its excellent electrochemical properties, including high Li+ ion capacity and relatively high operating voltage (i.e., ~ 4 V vs. Li/Li+ for LiMn2O4 and ~ 3.2 V vs. Mg/Mg2+). However, unlike the good electrochemical properties of MnO2 realized in Li-based systems, rather poor electrochemical performances have been reported in Mg based systems, particularly with low capacity and poor cycling performances. While the origin of the observed poor performances is believed to be due to the aforementioned strong ionic interaction between the Mg2+ ions and MnO2 lattice resulting in a limited diffusion of Mg2+ ions in MnO2, very little has been explored regarding the charge storage mechanism of MnO2 with divalent Mg2+ ions. This dissertation investigates the charge storage mechanism of MnO2, focusing on the insertion behaviors of divalent Mg2+ ions and exploring the origins of the limited Mg2+ insertion behavior in MnO2. It is found that the limited Mg2+ capacity in MnO2 can be significantly improved by introducing water molecules in the Mg electrolyte system, where the water molecules effectively mitigated the kinetic hindrance of Mg2+ insertion process. The combination of nanostructured MnO2 electrode and water effect provides a synergic effect demonstrating further enhanced Mg2+ insertion capability. Furthermore, it is demonstrated in this study that pre-cycling MnO2 electrodes in water-containing electrolyte activates MnO2 electrode, after which improved Mg2+ capacity is maintained in dry Mg electrolyte. Based on a series of XPS analysis, a conversion mechanism is proposed where magnesiated MnO2 undergoes a conversion reaction to Mg(OH)2 and MnOx and Mn(OH)y species in the presence of water molecules. This conversion process is believed to be the driving force that generates the improved Mg2+ capacity in MnO2 along with the water molecule’s charge screening effect. Finally, it is discussed that upon a consecutive cycling of MnO2 in the water-containing Mg electrolyte, structural water is generated within the MnO2 lattice, which is thought to be the origin of the observed activation phenomenon. The results provided in this dissertation highlight that the divalency of Mg2+ ions result in very different electrochemical behaviors than those of the well-studied monovalent Li+ ions towards MnO2.
Resumo:
Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases
Resumo:
Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.
Resumo:
Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.