988 resultados para in-hadron condensates
Resumo:
A study of proton-proton collisions in which two b hadrons are produced in association with a Z boson is reported. The collisions were recorded at a centre-of-mass energy of 7TeV with the CMS detector at the LHC, for an integrated luminosity of 5:2 fb-1. The b hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets, permitting the study of b-hadron pair production at small angular separation. Differential cross sections are presented as a function of the angular separation of the b hadrons and the Z boson. In addition, inclusive measurements are presented. For both the inclusive and differential studies, different ranges of Z boson momentum are considered, and each measurement is compared to the predictions from different event generators at leading-order and next-to-leading-order accuracy. Copyright CERN.
Resumo:
This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360pb-1 sample of data collected with the CDF II detector in pp̄ collisions at s=1.96TeV. Semileptonic decays of B̄0, B-, and B̄s0 mesons, as well as Λb0 baryons, are reconstructed. For an effective bottom hadron pT threshold of 7GeV/c, the fragmentation fractions are measured to be fu/fd=1.054±0.018(stat)-0.045+0.025(sys)±0. 058(B), fs/(fu+fd)=0.160±0.005(stat)-0.010+0.011(sys)-0.034+0.057(B), and fΛb/(fu+fd)=0.281±0.012(stat)-0.056+0.058(sys)-0.087+0.128(B), where the uncertainty B is due to uncertainties on measured branching ratios. The value of fs/(fu+fd) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio fΛb/(fu+fd) is approximately twice the value previously measured at LEP. The approximately 2σ discrepancy is examined in terms of kinematic differences between the two production environments. © 2008 The American Physical Society.
Resumo:
The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made on the signs ( or magnitudes) of the relevant parameters like the scattering lengths and the coupling coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to the individual ( uncoupled) state.
Resumo:
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.
Resumo:
We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
PHENIX has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c(2) in p + p collisions at root s = 200 GeV. The contributions from light meson decays to e(+)e(-) pairs have been determined based on measurements of hadron production cross sections by PHENIX. Within the systematic uncertainty of similar to 20% they account for all e(+)e(-) pairs in the mass region below similar to 1 GeV/c(2). The e(+)e(-) pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) pb. which is consistent with QCD calculations and measurements of single leptons by PHENIX. (C) 2008 Elsevier BV. All rights reserved.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
We consider (for the first time) the ratios of doubly heavy baryon masses (spin 3/2 over spin 1/2 and SU(3) mass-splittings) using double ratios of sum rules (DRSR), which are more accurate than the usual simple ratios often used in the literature for getting the hadron masses. In general, our results agree and compete in precision with potential model predictions. In our approach, the alpha(s) corrections induced by the anomalous dimensions of the correlators are the main sources of the Xi(QQ)*-Xi(QQ) mass-splittings, which seem to indicate a 1/M(Q) behaviour and can only allow the electromagnetic decay Xi(QQ)* -> Xi(QQ) + gamma but not to Xi(QQ) + pi. Our results also show that the SU(3) mass-splittings are (almost) independent of the spin of the baryons and behave approximately like 1/M(Q), which could be understood from the QCD expressions of the corresponding two-point correlator. Our results can improved by including radiative corrections to the SU(3) breaking terms and can be tested, in the near future, at Tevatron and LHCb. (C) 2010 Published by Elsevier B.V.
Resumo:
The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.
Resumo:
We have studied a Bose-Einstein condensate of (87)Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations. (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Using a peculiar version of the SU(3)(L) circle times U(1)(N) electroweak model, we investigate the production of doubly charged Higgs boson at the Large Hadron Collider. Our results include branching ratio calculations for the doubly charged Higgs and for one of the neutral scalar bosons of the model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a a scalar inversely linear potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. This mapping gives rise to an effective Kratzer potential and exact bounded solutions are found in closed form. The normalizable zero-eigenmode solution is also found. A few unusual results are revealed.