890 resultados para improved particle swarm
Resumo:
A Inteligência de Enxame foi proposta a partir da observação do comportamento social de espécies de insetos, pássaros e peixes. A ideia central deste comportamento coletivo é executar uma tarefa complexa decompondo-a em tarefas simples, que são facilmente executadas pelos indivíduos do enxame. A realização coordenada destas tarefas simples, respeitando uma proporção pré-definida de execução, permite a realização da tarefa complexa. O problema de alocação de tarefas surge da necessidade de alocar as tarefas aos indivíduos de modo coordenado, permitindo o gerenciamento do enxame. A alocação de tarefas é um processo dinâmico pois precisa ser continuamente ajustado em resposta a alterações no ambiente, na configuração do enxame e/ou no desempenho do mesmo. A robótica de enxame surge deste contexto de cooperação coletiva, ampliada à robôs reais. Nesta abordagem, problemas complexos são resolvidos pela realização de tarefas complexas por enxames de robôs simples, com capacidade de processamento e comunicação limitada. Objetivando obter flexibilidade e confiabilidade, a alocação deve emergir como resultado de um processo distribuído. Com a descentralização do problema e o aumento do número de robôs no enxame, o processo de alocação adquire uma elevada complexidade. Desta forma, o problema de alocação de tarefas pode ser caracterizado como um processo de otimização que aloca as tarefas aos robôs, de modo que a proporção desejada seja atendida no momento em que o processo de otimização encontre a solução desejada. Nesta dissertação, são propostos dois algoritmos que seguem abordagens distintas ao problema de alocação dinâmica de tarefas, sendo uma local e a outra global. O algoritmo para alocação dinâmica de tarefas com abordagem local (ADTL) atualiza a alocação de tarefa de cada robô a partir de uma avaliação determinística do conhecimento atual que este possui sobre as tarefas alocadas aos demais robôs do enxame. O algoritmo para alocação dinâmica de tarefas com abordagem global (ADTG) atualiza a alocação de tarefas do enxame com base no algoritmo de otimização PSO (Particle swarm optimization). No ADTG, cada robô possui uma possível solução para a alocação do enxame que é continuamente atualizada através da troca de informação entre os robôs. As alocações são avaliadas quanto a sua aptidão em atender à proporção-objetivo. Quando é identificada a alocação de maior aptidão no enxame, todos os robôs do enxame são alocados para as tarefas definidas por esta alocação. Os algoritmos propostos foram implementados em enxames com diferentes arranjos de robôs reais demonstrando sua eficiência e eficácia, atestados pelos resultados obtidos.
Resumo:
Diversas das possíveis aplicações da robótica de enxame demandam que cada robô seja capaz de estimar a sua posição. A informação de localização dos robôs é necessária, por exemplo, para que cada elemento do enxame possa se posicionar dentro de uma formatura de robôs pré-definida. Da mesma forma, quando os robôs atuam como sensores móveis, a informação de posição é necessária para que seja possível identificar o local dos eventos medidos. Em virtude do tamanho, custo e energia dos dispositivos, bem como limitações impostas pelo ambiente de operação, a solução mais evidente, i.e. utilizar um Sistema de Posicionamento Global (GPS), torna-se muitas vezes inviável. O método proposto neste trabalho permite que as posições absolutas de um conjunto de nós desconhecidos sejam estimadas, com base nas coordenadas de um conjunto de nós de referência e nas medidas de distância tomadas entre os nós da rede. A solução é obtida por meio de uma estratégia de processamento distribuído, onde cada nó desconhecido estima sua própria posição e ajuda os seus vizinhos a calcular as suas respectivas coordenadas. A solução conta com um novo método denominado Multi-hop Collaborative Min-Max Localization (MCMM), ora proposto com o objetivo de melhorar a qualidade da posição inicial dos nós desconhecidos em caso de falhas durante o reconhecimento dos nós de referência. O refinamento das posições é feito com base nos algoritmos de busca por retrocesso (BSA) e de otimização por enxame de partículas (PSO), cujos desempenhos são comparados. Para compor a função objetivo, é introduzido um novo método para o cálculo do fator de confiança dos nós da rede, o Fator de Confiança pela Área Min-Max (MMA-CF), o qual é comparado com o Fator de Confiança por Saltos às Referências (HTA-CF), previamente existente. Com base no método de localização proposto, foram desenvolvidos quatro algoritmos, os quais são avaliados por meio de simulações realizadas no MATLABr e experimentos conduzidos em enxames de robôs do tipo Kilobot. O desempenho dos algoritmos é avaliado em problemas com diferentes topologias, quantidades de nós e proporção de nós de referência. O desempenho dos algoritmos é também comparado com o de outros algoritmos de localização, tendo apresentado resultados 40% a 51% melhores. Os resultados das simulações e dos experimentos demonstram a eficácia do método proposto.
Resumo:
提出了一种基于粒子群算法优化(PSO)的模糊控制器,对模糊控制器参数进行全局优化,以弥补模糊控制器参数在线调节方面的不足,并应用于球磨机粉磨系统的控制中。控制系统采用粒子群优化模糊控制器作为双闭环控制中的成品流量控制器,并在Matlab/Simulink进行的仿真分析中实现模糊控制器参数的在线调节。仿真结果表明,系统较好地实现了给定参考轨迹自适应跟踪,具有鲁棒性强、控制精度高等优点。
Resumo:
射频识别技术(Radio Frequency Identification, RFID)作为采集与处理信息的高新技术和信息化标准的基础,被列为本世纪十大重要技术之一。但是,RFID技术的大规模实际应用仍处于探索阶段,RFID系统的应用基础技术还存在着大量尚未解决的关键问题,其中RFID系统优化是RFID技术研究和应用的重要课题。由于RFID系统本身的动态性和不确定性, RFID系统优化面对的一般是非线性、多目标、大规模的复杂优化问题,传统的数学优化算法在处理这些问题时,存在困难。为此,研究新的优化算法成为RFID技术实际应用和理论研究中必须解决的课题。 智能计算方法是求解复杂RFID系统优化问题的一种可供选择的算法。智能计算作为一个新兴领域,其发展已引起了多个学科领域研究人员的关注,目前已经成为人工智能、经济、社会、生物等交叉学科的研究热点和前沿领域。智能计算的各类算法已在传统NP问题求解及诸多实际应用领域中展现出其优异的性能和巨大的发展潜力。 本文旨在对RFID系统的各种优化问题进行深入研究和探讨,面向RFID技术的实际应用需求构建其优化模型,并基于智能计算思想设计能够有效求解这些复杂模型的新型智能优化算法。具体研究内容包括: 首先,进行了RFID读写器网络的调度问题研究。在深入分析RFID网络中读写器冲突类型和成因的基础上,考虑RFID网络中的读写器冲突约束,以最小化系统中的频道数量、时隙分配以及总处理时间建立了RFID读写器网络调度的数学优化模型。从生物学的角度出发提出基于生态捕食模型的改进PSO算法(Particle Swarm Optimizer based on Predator-prey Coevolution, PSOPC),在一定程度上解决了PSO算法在迭代后期随着多样性丧失而陷入局部最优的缺点。应用PSOPC设计了求解RFID读写器网络调度模型的智能求解算法,分别给出算法的求解框架、关键步骤的实现机制。通过在不同规模的RFID读写器网络上进行实例仿真,验证了算法的有效性和模型的正确性。 其次,进行了基于菌群自适应觅食算法RFID网络规划问题的研究。考虑RFID系统在不同应用环境下的系统需求,建立了RFID网络规化的数学模型,其目标函数分别为:RFID网络标签覆盖率的最大化目标函数、RFID读写器冲突的最小化目标函数、RFID网络运行的经济效益最大化目标函数、RFID网络运行的负载平衡目标函数以及同时考虑全局目标的混合目标函数。将自然界生物觅食所采用的自适应搜索策略与细菌的趋化行为和群体感应机制相集成,提出了适合求解复杂RFID网络规划问题的菌群自适应觅食算法(Adaptive Bacterial Foraging Optimization, ABFO)。通过仿真实验基于ABFO算法分别对RFID网络规划模型中的五个目标函数进行了实例求解和分析,测试结果与标准PSO算法和遗传算法进行了比较分析。 再次,进行了基于系统智能方法的RFID网络规划分布式决策模型研究。采用分布式决策的思想建立了RFID网络规划的层次模型,在一定程度上缓解、分散了RFID网络规划问题的复杂性,以解决具有混合变量(包括离散变量和连续变量)的多目标RFID网络规划问题。针对层次模型求解的复杂性,以复杂适应系统理论为指导思想设计了一种新型系统智能优化算法对RFID网络规划的层次模型进行求解。系统智能算法将群体智能中的单层群体系统概念扩展为多层涌现系统,仿真实验表明新提出的算法显著提高了智能计算方法的寻优能力,以及算法的适应性、鲁棒性和平衡性等性能。 最后,进行了RFID网络目标跟踪系统中的数据融合研究。以基于RFID技术的目标定位与跟踪系统为应用背景,提出了基于模糊聚类方法的多RFID读写器数据融合模型框架。通过深入分析蜜蜂采蜜的基本生物学规律,对蜜蜂的个体行为及群体行为进行模拟,提出了一类新型群体智能优化算法-蜂群优化算法(Bee Swarm Optimization, BSO),并将BSO算法嵌入RFID目标定位跟踪系统,作为其模糊聚类的基本算法。仿真研究表明,提出的融合模型能够有效的过滤读写器对跟踪目标的错误监测数据,显著提高目标定位与跟踪的精度。
Resumo:
通过优化知识表达系统中条件属性对决策属性的依赖度,深入研究了粗糙集并与多Agent系统相结合。利用离散粒子群算法,提出一种基于粒子群优化的粗糙集知识约简算法,该算法解决了启发式算法无法全局搜索进行约简的问题。最后通过在矿井中调度信息的应用验证了有效性。
Resumo:
在电机的设计中,常常需要通过优化设计得到合理的电机结构尺寸和参数.电机的设计问题实质上是一种带约束的复杂的非线性连续函数优化问题.要得到一个满意的优化结果不仅要求算法具有较高的精度,而且要有快的收敛速度.提出一种新的混合算法对永磁电机的尺寸和整体结构进行优化设计.将混沌算法和粒子群算法相结合,以微型永磁电机为例,对槽形等多个变量进行优化,结果证明了算法的有效性和快速性,适合于同类问题求解.
Resumo:
X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.
Resumo:
Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.
Resumo:
To improve the performance of classification using Support Vector Machines (SVMs) while reducing the model selection time, this paper introduces Differential Evolution, a heuristic method for model selection in two-class SVMs with a RBF kernel. The model selection method and related tuning algorithm are both presented. Experimental results from application to a selection of benchmark datasets for SVMs show that this method can produce an optimized classification in less time and with higher accuracy than a classical grid search. Comparison with a Particle Swarm Optimization (PSO) based alternative is also included.
Resumo:
Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.
Resumo:
The 5G network infrastructure is driven by the evolution of today's most demanding applications. Already, multimedia applications such as on-demand HD video and IPTV require gigabit- per-second throughput and low delay, while future technologies include ultra HDTV and machine-to-machine communication. Mm-Wave technologies such as IEEE 802.15.3c and IEEE 802.11ad are ideal candidates to deliver high throughput to multiple users demanding differentiated QoS. Optimization is often used as a methodology to meet throughput and delay constraints. However, traditional optimization techniques are not suited to a mixed set of multimedia applications. Particle swarm optimization (PSO) is shown as a promising technique in this context. Channel-time allocation PSO (CTA-PSO) is successfully shown here to allocate resource even in scenarios where blockage of the 60 GHz signal poses significant challenges.
Resumo:
This paper presents a surrogate-model based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine’s previous operational performance, the DFIG’s stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization (PSO)-based surrogate optimization techniques are used in conjunction with the finite element method (FEM) to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
This study proposes an approach to optimally allocate multiple types of flexible AC transmission system (FACTS) devices in market-based power systems with wind generation. The main objective is to maximise profit by minimising device investment cost, and the system's operating cost considering both normal conditions and possible contingencies. The proposed method accurately evaluates the long-term costs and benefits gained by FACTS devices (FDs) installation to solve a large-scale optimisation problem. The objective implies maximising social welfare as well as minimising compensations paid for generation re-scheduling and load shedding. Many technical operation constraints and uncertainties are included in problem formulation. The overall problem is solved using both particle swarm optimisations for attaining optimal FDs allocation as main problem and optimal power flow as sub-optimisation problem. The effectiveness of the proposed approach is demonstrated on modified IEEE 14-bus test system and IEEE 118-bus test system.