975 resultados para hydro-meteorological disasters
Resumo:
The present investigation on the Muvattupuzha river basin is an integrated approach based on hydrogeological, geophysical, hydrogeochemical parameters and the results are interpreted using satellite data. GIS also been used to combine the various spatial and non-spatial data. The salient finding of the present study are accounted below to provide a holistic picture on the groundwaters of the Muvattupuzha river basin. In the Muvattupuzha river basin the groundwaters are drawn from the weathered and fractured zones. The groundwater level fluctuations of the basin from 1992 to 2001 reveal that the water level varies between a minimum of 0.003 m and a maximum of 3.45 m. The groundwater fluctuation is affected by rainfall. Various aquifer parameters like transmissivity, storage coefficient, optimum yield, time for full recovery and specific capacity indices are analyzed. The depth to the bedrock of the basin varies widely from 1.5 to 17 mbgl. A ground water prospective map of phreatic aquifer has been prepared based on thickness of the weathered zone and low resistivity values (<500 ohm-m) and accordingly the basin is classified in three phreatic potential zones as good, moderate and poor. The groundwater of the Muvattupuzha river basin, the pH value ranges from 5.5 to 8.1, in acidic nature. Hydrochemical facies diagram reveals that most of the samples in both the seasons fall in mixing and dissolution facies and a few in static and dynamic natures. Further study is needed on impact of dykes on the occurrence and movement of groundwater, impact of seapages from irrigation canals on the groundwater quality and resources of this basin, and influence of inter-basin transfer of surface water on groundwater.
Resumo:
The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.
Resumo:
This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.
Resumo:
The intention of the present thesis work is to understand the physical processes responsible for climatic variability and predictability of the Indian subcontinent. The study is expected to delineate and emphasize the various boundaries and areas of transition and bring out the regional and temporal characteristics of the meteorological distribution of the country. The results obtained from the study is expected to provide a better understanding the physics of Indian cl imate, which can be incorporated for numerical weather prediction. The results obtained from the present study can be incorporated for climate modelling and long-term prediction of the meteorological parameters over Indian subcontinent
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
People in several parts of the world as well in India countenance an immense confront to meet the basic needs of water. The crisis is not due to lack of fresh water but its availability in adequate superiority. Environmental quality objectives should be developed in order to define acceptable loads on the terrain. There has been a number of initiatives in water quality monitoring but the next step towards improving its quality hasn’t taken the required pace. Today, there is a growing need to create awareness among citizens on the different technologies available for improving the water quality. Monitoring facilitate to apprehend how land and water use distress the quality of water and assist in estimating the extent of pollution. Once these issues are recognized, people can work towards local solutions to manage the indispensable resource effectively. Ground waters are extremely precious resources and in many countries together with India they represent the most important drinking water supply. They are generally microbiologically pure and, in most cases, they do not need any treatment. This communiqué is intended to act as a channel on the various paraphernalia and techniques accessible for groundwater quality assessment and suggesting the assured precautionary measures to embark on environment management. This learning is imperative considering that groundwater as the exclusive source of drinking water in the region which not makes situation alarming but also calls for immediate attention. The scope of this work is somewhat vast. Water quality in Ernakulam district is getting deteriorated due to the fast growth of urbanization. The closure of several water bodies due to land development and construction prevents infiltration of rainwater into the ground and hence recharge the aquifers. Most of the aquifers are getting polluted from the industrial effluents and chemicals and fertilizers used in agriculture. Such serious issues require proper monitoring of groundwater and steps are to be taken for remedial measures. This study helps in the total protection of the rich resource of groundwater and its sustainability. Socio-economic aspect covered could be used for conducting further individual case studies and to suggest remedial measures on a scientific basis. The specific study taken up for 15 sites can be further extended to the sources of pollution, especially industrial and agriculture
Resumo:
During the period from 12 to 15 April, 2009 nearly the entire Iran, apart from the southern border, experienced an advective cooling event. While winter freezing concerns are typical, the nature of this freezing event was unusual with respect to its date of occurrence and accompanying synoptic meteorological situation. To analyze the freezing event, the relevant meteorological data at multiple levels of the atmosphere were examined from the NCEP/ NCAR reanalysis dataset. The results showed that a polar vortex was responsible for the freezing event over the country extending southward extraordinarily in such a way that its ridge influenced most parts of Iran. This was recognized as an abnormal extension of a polar vortex in the recent years. The sea-level pressure fields indicated that a ridge of large-scale anticyclone centered over Black Sea extended southward and prevailed over most parts of Iran. This resulted in the formation of a severe cold air advection from high latitudes (Polar region) over Iran. During the study period, moisture pumping was observed from the Arabian Sea and Persian Gulf. The winds at 1000 hPa level blew with a magnitude of 10 m s-1 toward south in the region of convergence (between -2 9 10-6 s-1 and -12 9 10-6 s-1). The vertical profilesof temperature and humidity also indicated that the ICE structural icing occurred at multiple levels of the atmosphere, i.e, from 800 hPa through 400 hPa levels. In addition to the carburetor (or induction), icing occurred between 900 and 700 hPa levels in the selected radiosonde stations during the study period. In addition, the HYSPLIT backward trajectory model outputs were in quite good agreement with the observed synoptic features
Resumo:
The study mainly intends to investigate the meteorological aspects associated with the formation of mud banks along southwest coast of India. During the formation of mud bank, the prominent monsoon organized convection is located in the equatorial region and relatively low clouding over Indian mainland. The wind core of the low level jet stream passes through the monsoon organized convection. When the monsoon organized convection is in the equatorial region, the low level wind over the southwest coast of India is parallel to the coastline and toward south. This wind along the coast gives rise to Ekman mass transport away from the coastline and subsequently formation of mud bank, if the high wind stress persists continuously for three or more days. As a result of the increased alongshore wind stress, the coastal upwelling increases. An increase in chlorophyll-a concentration and total chlorophyll can also be seen associated with mudbank formation
Resumo:
In rural areas of the Mekong Countries, the problem of electricity supplying rural communities is particularly alarming. Supplying power to these areas requires facilities that are not economically viable. However, government programs are under way to provide this product that is vital to community well being. A nation priority of Mekong Countries is to provide electrical power to people in rural areas, within normal budgetary constraints. Electricity must be introduced into rural areas in such a way that maximize the technical, economic and social benefit. Another consideration is the source of electrical generation and the effects on the natural environment. The main research purpose is to implement field tests, monitoring and evaluation of the PV-Diesel Hybrid System (PVHS) at the Energy Park of School of Renewable Energy Technology (SERT) in order to test the PVSH working under the meteorological conditions of the Mekong Countries and to develop a software simulation called RES, which studies the technical and economic performance of rural electrification options. This software must be easy to use and understand for the energy planner on rural electrification projects, to evaluate the technical and economic performance of the PVHS based on the renewable energy potential for rural electrification of the Mekong Country by using RES. Finally, this project aims to give guidance for the possible use of PVHS application in this region, particularly in regard to its technical and economic sustainability. PVHS should be promoted according to the principles of proper design and adequate follow up with maintenance, so that the number of satisfied users will be achieved. PVHS is not the only possible technology for rural electrification, but for the Mekong Countries it is one of the most proper choices. Other renewable energy options such as wind, biomass and hydro power need to be studied in future.
Resumo:
Abstract 1: Social Networks such as Twitter are often used for disseminating and collecting information during natural disasters. The potential for its use in Disaster Management has been acknowledged. However, more nuanced understanding of the communications that take place on social networks are required to more effectively integrate this information into the processes within disaster management. The type and value of information shared should be assessed, determining the benefits and issues, with credibility and reliability as known concerns. Mapping the tweets in relation to the modelled stages of a disaster can be a useful evaluation for determining the benefits/drawbacks of using data from social networks, such as Twitter, in disaster management.A thematic analysis of tweets’ content, language and tone during the UK Storms and Floods 2013/14 was conducted. Manual scripting was used to determine the official sequence of events, and classify the stages of the disaster into the phases of the Disaster Management Lifecycle, to produce a timeline. Twenty- five topics discussed on Twitter emerged, and three key types of tweets, based on the language and tone, were identified. The timeline represents the events of the disaster, according to the Met Office reports, classed into B. Faulkner’s Disaster Management Lifecycle framework. Context is provided when observing the analysed tweets against the timeline. This illustrates a potential basis and benefit for mapping tweets into the Disaster Management Lifecycle phases. Comparing the number of tweets submitted in each month with the timeline, suggests users tweet more as an event heightens and persists. Furthermore, users generally express greater emotion and urgency in their tweets.This paper concludes that the thematic analysis of content on social networks, such as Twitter, can be useful in gaining additional perspectives for disaster management. It demonstrates that mapping tweets into the phases of a Disaster Management Lifecycle model can have benefits in the recovery phase, not just in the response phase, to potentially improve future policies and activities. Abstract2: The current execution of privacy policies, as a mode of communicating information to users, is unsatisfactory. Social networking sites (SNS) exemplify this issue, attracting growing concerns regarding their use of personal data and its effect on user privacy. This demonstrates the need for more informative policies. However, SNS lack the incentives required to improve policies, which is exacerbated by the difficulties of creating a policy that is both concise and compliant. Standardization addresses many of these issues, providing benefits for users and SNS, although it is only possible if policies share attributes which can be standardized. This investigation used thematic analysis and cross- document structure theory, to assess the similarity of attributes between the privacy policies (as available in August 2014), of the six most frequently visited SNS globally. Using the Jaccard similarity coefficient, two types of attribute were measured; the clauses used by SNS and the coverage of forty recommendations made by the UK Information Commissioner’s Office. Analysis showed that whilst similarity in the clauses used was low, similarity in the recommendations covered was high, indicating that SNS use different clauses, but to convey similar information. The analysis also showed that low similarity in the clauses was largely due to differences in semantics, elaboration and functionality between SNS. Therefore, this paper proposes that the policies of SNS already share attributes, indicating the feasibility of standardization and five recommendations are made to begin facilitating this, based on the findings of the investigation.
Resumo:
What are the effects of natural disasters on electoral results? Some authors claim that catastrophes have a negative effect on the survival of leaders in a democracy because voters have a propensity to punish politicians for not preventing or poorly handling a crisis. In contrast, this paper finds that these events might be beneficial for leaders. Disasters are linked to leader survival through clientelism: they generate an in-flow of resources in the form of aid, which increase money for buying votes. Analyzing the rainy season of 2010-2011 in Colombia, considered its worst disaster in history, I use a difference-in-differences strategy to show that in the local election incumbent parties benefited from the disaster. The result is robust to different specifications and alternative explanations. Moreover, places receiving more aid and those with judicial evidence of vote-buying irregularities, are more likely to reelect the incumbent, supporting the mechanism proposed by this paper.
Resumo:
Conforme los riesgos naturales desembocan en desastres cada vez mayores, cuyos efectos hacen saltar la alarma social de un país o rebasan sus fronteras, trascendiendo a la conciencia internacional, nacen nuevas políticas de cooperación a nivel mundial. Este libro muestra las relativas dimensiones de los riesgos con relación a la magnitud, velocidad, duración y frecuencia. Muestra estadísticamente las dimensiones de los más importantes desastres, terremotos, volcanes, tsunamis, inundaciones, sequías, huracanes, tormentas tropicales, deslizamientos de tierra, avalanchas, incendios, plagas. Podemos conocer el número de muertes en los desastres y el número de gente afectada por ellos, así como las pérdidas económicas.