181 resultados para hurdles
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.
At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.
The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.
In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.
To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.
In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.
Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.
In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.
Resumo:
The ability of systemically administered bacteria to target and replicate to high numbers within solid tumours is well established. Tumour localising bacteria can be exploited as biological vehicles for the delivery of nucleic acid, protein or therapeutic payloads to tumour sites and present researchers with a highly targeted and safe vehicle for tumour imaging and cancer therapy. This work aimed to utilise bacteria to activate imaging probes or prodrugs specifically within target tissue in order to facilitate the development of novel imaging and therapeutic strategies. The vast majority of existing bacterial-mediated cancer therapy strategies rely on the use of bacteria that have been genetically modified (GM) to express genes of interest. While these approaches have been shown to be effective in a preclinical setting, GM presents extra regulatory hurdles in a clinical context. Also, many strains of bacteria are not genetically tractably and hence cannot currently be engineered to express genes of interest. For this reason, the development of imaging and therapeutic systems that utilise unengineered bacteria for the activation of probes or drugs represents a significant improvement on the current gold standard. Endogenously expressed bacterial enzymes that are not found in mammalian cells can be used for the targeted activation of imaging probes or prodrugs whose activation is only achieved in the presence of these enzymes. Exploitation of the intrinsic enzymatic activity of bacteria allows the use of a wider range of bacteria and presents a more clinically relevant system than those that are currently in use. The nitroreductase (NTR) enzymes, found only in bacteria, represent one such option. Chapter 2 introduces the novel concept of utilising native bacterial NTRs for the targeted activation of the fluorophore CytoCy5S. Bacterial-mediated probe activation allowed for non-invasive fluorescence imaging of in vivo bacteria in models of infection and cancer. Chapter 3 extends the concept of using native bacterial enzymes to activate a novel luminescent, NTR activated probe. The use of luminescence based imaging improved the sensitivity of the system and provides researchers with a more accessible modality for preclinical imaging. It also represents an improvement over existing caged luciferin probe systems described to date. Chapter 4 focuses on the employment of endogenous bacterial enzymes for use in a therapeutic setting. Native bacterial enzymatic activity (including NTR enzymes) was shown to be capable of activating multiple prodrugs, in isolation and in combination, and eliciting therapeutic responses in murine models of cancer. Overall, the data presented in this thesis advance the fields of bacterial therapy and imaging and introduce novel strategies for disease diagnosis and treatment. These preclinical studies demonstrate potential for clinical translation in multiple fields of research and medicine.
Resumo:
Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identified and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems.
Resumo:
Droughts surfaced in 1877 as a crucial problem for the birthing Brazilian nation. Engineers, who formed the country's technical and scientific elite, took it upon themselves to study, understand and fight the problem through planned actions of intervention on space. This work, based on proposals and discussions contained in engineering magazines and reports, aims to provide elements for the comprehension of how these systematized actions against droughts, in the Iate nineteenth and early twentieth century, contributed to spatial analysis and the formation of a (then-inexistent) regional and territorial planning discipline in Brazi!. Engineers, by taking up the position of masterminds in the country's modernization, guaranteed for themselves personal economic stability, social prestige and political power. By understanding nature, either as a resource to be exploited or an adversary to national progress, they contributed to the delimitation of the region now known as the Northeast. By seeking to understand the drought phenomenon, they created knowledge about the space they sought to intervene on; by constructing their projects amid political and economical difficulty, they changed the organizational structures of cities and country in the northeast. The proposals for açudes (Iarge water reservoirs) allowed the fixation of population and the resistance against droughts; the roads - railroads and automotive roadways - connected the sertão to the capitais and the coast, speeding up help to the affected populations during droughts and allowing the circulation of goods so as to strengthen the local economies in normal rimes. The adopted practices and techniques, adapted from foreign experience and developed through trial and improvement, were consolidated as an eminently spatial intervention course, even if a theoretical body of regional or territorial planning wasn't formed in Brazil. Regional Planning proper was first applied in the country in the Northeast itself, in the 1950s, based off an economical view of reality in order to achieve development. The engineer's work prior tothat date, however, cannot be dlsconsldered. It was proved that, despite facing financial and political hurdles, engineers had a profound commitment to the problem and intended to act systematically to transform the economical and social relations in the region, in order to be victorious in their struggle against droughts
Resumo:
Wild berries are fundamental components of traditional diet and medicine for Native American and Alaska Native tribes and contain a diverse array of phytochemicals, including anthocyanins and proanthocyanidins, with known efficacy against metabolic disorders. Bioexploration represents a new paradigm under which bioactive preparations are screened in coordination with indigenous communities, to prepare for subsequent in-depth chemical and biological analysis. The inclusive, participatory philosophical approach utilized in bioexploration has additional benefits that could be realized in seemingly disparate areas, such as education and economics. Five species of wild Alaskan berries (Vaccinium uliginosum, V. ovalifolium, Empetrum nigrum, Rubus chamaemorus, and R. spectabilis) were tested using “Screens-to-Nature” (STN), a community-participatory approach to screen for potential bioactivity, in partnership with tribal members from three geographically distinct Alaskan villages: Akutan, Seldovia, and Point Hope. Berries were subsequently evaluated via HPLC and LC-MS2, yielding significant species and location-based variation in anthocyanins (0.9-438.6 mg eq /100g fw) and proanthocyanins (73.7-625.2 mg eq /100g fw). A-type proanthocyanidin dimers through tetramers were identified in all species tested. Berries were analyzed for in vitro and in vivo activity related to diabetes and obesity. R. spectabilis samples increased preadipocyte-factor-1 levels by 82% over control, and proanthocyanidin-rich fractions from multiple species reduced lipid accumulation in 3T3-L1 adipocytes. Furthermore, extracts of V. uliginosum and E. nigrum (Point Hope) reduced serum glucose levels in C57bl/6j mice up to 45%. The same precepts of bioexploration, especially the inclusion of indigenous community perspectives and knowledge, have relevance in other areas of study, such as education and economics. Studies have established the apathetic, low-motivational environment characteristic of many introductory science laboratory classes is detrimental to student interest, learning, and continuation in scientific education. A primary means of arresting this decline and stimulating the students’ attention and excitement is via engagement in hands-on experimentation and research. Using field workshops, the STN system is investigated as to its potential as a novel participatory educational tool, using assays centered around bioexploration and bioactive plant compounds that hold the potential to offset human health conditions. This evaluation of the STN system provided ample evidence as to its ability to augment and improve science education. Furthermore, Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was employed as a theoretical framework to review the potential benefits and hurdles associated with developing a wild Alaskan berry commodity. Synthesizing various sources of information – including logistics and harvest costs, sources of initial capital, opportunities in the current superfruit industry, and socioeconomic factors – the development of a berry commodity proves to be a complex amalgam of competing factors which would require a delicate balance before proceeding.
Resumo:
The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.
Resumo:
Research suggests that supervisors and peers can help employees make sense of what is important or expected from them at work and, thereby, shape their behaviors. In this dissertation, I examine how employees’ organizational citizenship behaviors (OCB), such as helping and voice, are differentially affected by these two sources of influence over time. In particular, I compare the relative and joint effectiveness of two field interventions to enhance OCB: (a) a role clarification intervention in which supervisors are trained to set expectations for OCB for their employees and encourage them to engage in OCB and (b) a norm establishment intervention in which peers are trained to set expectations for each other and encourage each other to perform OCB. I utilize a mixed methods approach involving a quasi-field experiment to test for changes in OCB and qualitative data to explore the theoretical mechanisms over the course of three months in a large food processing plant. I find that role clarification interventions alone have immediate positive effects on OCB, whereas norm establishment interventions alone take a longer period of time to increase OCB. In addition, in the condition where both interventions were combined, norm establishment interventions weaken the effects of role clarification earlier on; however, at later stages in time, this pattern reverses as norm establishment enhances the effects of role clarification on OCB. Through these findings, I highlight how (a) organizations seeking quick increases in citizenship might be better off focusing on supervisors as sources of influence; (b) organizations need to persist with peer-focused interventions to see positive gains; and (c) despite initial hurdles with peer-focused interventions, over time, they can lead to the highest increases in OCB when combined with supervisor-focused interventions.
Resumo:
The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.
Resumo:
The WorldFish Center has been collaborating with its partners (AWF and WWF) in the Maringa-Lopori-Wamba (MLW) and the Lac Tele-Lac Ntomba (LTL) Landscapes to develop participatory monitoring systems for aquatic ecosystems. This requires rigorous data collection regarding fishing effort and catch, and the establishment of community partnerships; enabling WorldFish Center researchers to understand and counteract the institutional legacies of previous NGO interventions. In the MLW, fisherfolk livelihoods are severely limited due to their extreme isolation from markets and government services. However, fisherfolk have some experience dealing with natural resource conservation or extraction entities as well as humanitarian agencies. Their history has left them slightly skeptical but reasonably willing to collaborate with incoming NGOs. Around Lac Ntomba, fisherfolk have had more extensive interactions with conservation and humanitarian NGOs, but despite their proximity to the Congo River, they appear to have very limited access to distant markets. As past benefits from NGO activities have been captured by local village elites many fishers are highly skeptical and even antagonistic toward NGOs in general, and see little benefits from collaborating with each other or NGOs. Similarly to the MLW and Lac Ntomba, Lac Maï-Ndombe fisherfolk were disillusioned by past NGO activities. However, in this area levels of fish catch are greater than in the other watersheds, and many fishers make regular trips to major markets in Kinshasa, Kikwit and Tchikapa. Consequently, while there are significant divisions to be addressed in Lac Maï-Ndombe, fisherfolk in general are more interested in exploring options for improving livelihoods. In order to overcome these hurdles, the WorldFish Center has introduced an integrated research-extension approach in its interactions with these communities. The teams conducted demonstrations of technological innovations that could significantly improve on present post-harvest fish processing practices, in particular: a solar fish drying tent and a fish smoking barrel.
Resumo:
BACKGROUND: The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. METHODS: Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. RESULTS: Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. CONCLUSIONS: The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.
Resumo:
Atral is a Portuguese Pharmaceutical firm devoted to the production of finished drugs. Due to domestic market hurdles, Atral is now, more than ever, focused in the world. The Central America region seams alluring due to its context alignment with firm’s resources bundle. As Atral should approach one regional country at a time, the purpose of this thesis is to find out the most suitable country to approach now. Hence a tailored scoring model was applied, based on contexts analysis and importance of benchmarking indicators to both firm and industry. Upon analysis of the highest scored country, the most appropriate entry modes were assessed.
Resumo:
Droughts surfaced in 1877 as a crucial problem for the birthing Brazilian nation. Engineers, who formed the country's technical and scientific elite, took it upon themselves to study, understand and fight the problem through planned actions of intervention on space. This work, based on proposals and discussions contained in engineering magazines and reports, aims to provide elements for the comprehension of how these systematized actions against droughts, in the Iate nineteenth and early twentieth century, contributed to spatial analysis and the formation of a (then-inexistent) regional and territorial planning discipline in Brazi!. Engineers, by taking up the position of masterminds in the country's modernization, guaranteed for themselves personal economic stability, social prestige and political power. By understanding nature, either as a resource to be exploited or an adversary to national progress, they contributed to the delimitation of the region now known as the Northeast. By seeking to understand the drought phenomenon, they created knowledge about the space they sought to intervene on; by constructing their projects amid political and economical difficulty, they changed the organizational structures of cities and country in the northeast. The proposals for açudes (Iarge water reservoirs) allowed the fixation of population and the resistance against droughts; the roads - railroads and automotive roadways - connected the sertão to the capitais and the coast, speeding up help to the affected populations during droughts and allowing the circulation of goods so as to strengthen the local economies in normal rimes. The adopted practices and techniques, adapted from foreign experience and developed through trial and improvement, were consolidated as an eminently spatial intervention course, even if a theoretical body of regional or territorial planning wasn't formed in Brazil. Regional Planning proper was first applied in the country in the Northeast itself, in the 1950s, based off an economical view of reality in order to achieve development. The engineer's work prior tothat date, however, cannot be dlsconsldered. It was proved that, despite facing financial and political hurdles, engineers had a profound commitment to the problem and intended to act systematically to transform the economical and social relations in the region, in order to be victorious in their struggle against droughts
Resumo:
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
Resumo:
Human Fertility 17(3):165-9 This article describes the experiences of twelve Irish couples who had successful IVF treatment in Ireland. Irish Medical guidelines specify that IVF may only be used when no other treatment is likely to be effective. This article is based on data drawn from a longitudinal research study by Cotter (2009) which tells the stories of 34 couples who sought fertility treatment. Initially, the women assumed that they would become pregnant when they stopped using contraception. As a couple, it was the ‘right time’ for them to have a child - they were ready, socially and financially. For several months they were patient, hoping it would happen naturally. With envy and some despair they watched as their friends had babies. Infertility came as a shock to most of them. They were reluctant to talk about it to anyone, and over time their anxieties were accompanied by feelings of regret, stigma and social exclusion. They finally sought medical treatment. The latter involved a series of diagnostic treatments, which eventually culminated in IVF which offered them a final chance of having a ‘child of their own’. While IVF can be clinically assessed in terms of cycle success rates, their stories showed treatment as a series of discoveries, as an extensive range of diagnostic tests and procedures helped to reveal to them where their problems might lie. They described their treatments as a series of sequential ‘hurdles’ that they had to overcome, which further strengthened their resolve to try IVF. Much more knowledgeable at that stage, they embraced IVF as a final challenge with single minded dedication while drawing on all their psychological and biological resources to promote a successful outcome. Of the 34 couples who took part in the study, twelve got pregnant. Unfortunately, two children died shortly after birth but eighteen babies survived (see Table I). The findings suggest that health policy should raise awareness of infertility, and advise women to become aware of it just as in the past, when health policy addressed contraception. Increased public knowledge would reduce the stigma attached to the inability to have a baby. In the Irish case, infertility diagnosis should be reviewed with a view to giving eligible couples earlier access to IVF.