968 resultados para histology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Ovarian cancer is the leading cause of death from gynecologic malignancies in the Western world. Fibroblast growth factor receptor (FGFR) signaling has been implicated to play a role in ovarian tumorigenesis. Mutational activation of one member of this receptor family, FGFR2, is a frequent event in endometrioid endometrial cancer. Given the similarities in the histologic and molecular genetics of ovarian and endometrial cancers, we hypothesized that activating FGFR2 mutations may occur in a subset of endometrioid ovarian tumors, and possibly other histotypes. METHODS: Six FGFR2 exons were sequenced in 120 primary ovarian tumors representing the major histologic subtypes. RESULTS: FGFR2 mutation was detected at low frequency in endometrioid (1/46, 2.2%) and serous (1/41, 2.4%) ovarian cancer. No mutations were detected in clear cell, mucinous, or mixed histology tumors or in the ovarian cancer cell lines tested. Functional characterization of the FGFR2 mutations confirmed that the mutations detected in ovarian cancer result in receptor activation. CONCLUSIONS: Despite the low incidence of FGFR2 mutations in ovarian cancer, the two FGFR2 mutations identified in ovarian tumors (S252W, Y376C) overlap with the oncogenic mutations previously identified in endometrial tumors, suggesting activated FGFR2 may contribute to ovarian cancer pathogenesis in a small subset of ovarian tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeo-stasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, im-munohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the os-teocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogene-sis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Serum levels of the inflammatory markers YKL-40 and IL-6 are increased in many conditions, including cancers. We examined serum YKL-40 and IL-6 levels in patients with Hodgkin lymphoma (HL), a tumor with strong immunologic reaction to relatively few tumor cells, especially in nodular sclerosis HL. Experimental Design We analyzed Danish and Swedish patients with incident HL (N=470) and population controls from Denmark (N= 245 for YKL-40; N= 348 for IL-6). Serum YKL-40 and IL-6 levels were determined by ELISA, and log-transformed data were analysed by linear regression, adjusting for age and sex. Results Serum levels of YKL-40 and IL-6 were increased in HL patients compared to controls (YKL-40: 3.6-fold, IL-6: 8.3-fold; both p<0.0001). In samples from pre-treatment HL patients (N=176), levels were correlated with more advanced stages (ptrend 0.0001 for YKL-40 and 0.013 for IL-6) and in those with B symptoms, but levels were similar in nodular sclerosis and mixed cellularity subtypes, by EBV status, and in younger (<45 years old) and older patients. Patients tested soon after treatment onset had significantly lower levels than pre-treatment patients, but even >6 months after treatment onset, serum YKL-40 and IL-6 levels remained significantly increased, compared to controls. In patients who died (N=12), pre-treatment levels for both YKL-40 and IL-6 were higher than in survivors, although not statistically significantly. Conclusions Serum YKL-40 and IL-6 levels were increased in untreated HL patients and those with more advanced stages but did not differ significantly by HL histology. Following treatment, serum levels were significantly lower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is influenced by the scaffold architecture. Copyright © 2012 American Society for Bone and Mineral Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing need for successful bone tissue engineering strategies and advanced biomaterials that mimic the structure and function of native tissues carry great promise. Successful bone repair approaches may include an osteoconductive scaffold, osteoinductive growth factors, cells with an osteogenic potential and capacity for graft vascularisation. To increase osteoinductivity of biomaterials, the local combination and delivery of growth factors has been developed. In the present study we investigated the osteogenic effects of calcium phosphate (CaP)-coated nanofiber mesh tube-mediated delivery of BMP-7 from a PRP matrix for the regeneration of critical sized segmental bone defects in a small animal model. Bilateral full-thickness diaphyseal segmental defects were created in twelve male Lewis rats and nanofiber mesh tubes were placed around the defect. Defects received either treatment with a CaP-coated nanofiber mesh tube (n = 6), an un-coated nanofiber mesh tube (n=6) a CaP-coated nanofiber mesh tube with PRP (n=6) or a CaP-coated nanofiber mesh tube in combination with 5 μg BMP-7 and PRP (n = 6). After 12 weeks, bone volume and biomechanical properties were evaluated using radiography, microCT, biomechanical testing and histology. The results demonstrated significantly higher biomechanical properties and bone volume for the BMP group compared to the control groups. These results were supported by the histological evaluations, where BMP group showed the highest rate of bone regeneration within the defect. In conclusion, BMP-7 delivery via PRP enhanced functional bone defect regeneration, and together these data support the use of BMP-7 in the treatment of critical sized defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrinopathic laminitis is frequently associated with hyperinsulinaemia but the role of glucose in the pathogenesis of the disease has not been fully investigated. This study aimed to determine the endogenous insulin response to a quantity of glucose equivalent to that administered during a laminitis-inducing, euglycaemic, hyperinsulinaemic clamp, over 48. h in insulin-sensitive Standardbred racehorses. In addition, the study investigated whether glucose infusion, in the absence of exogenous insulin administration, would result in the development of clinical and histopathological evidence of laminitis. Glucose (50% dextrose) was infused intravenously at a rate of 0.68 mL/kg/h for 48. h in treated horses (n = 4) and control horses (n = 3) received a balanced electrolyte solution (0.68 mL/kg/h). Lamellar histology was examined at the conclusion of the experiment. Horses in the treatment group were insulin sensitive (M value 0.039 ± 0.0012. mmol/kg/min and M-to-I ratio (100×) 0.014 ± 0.002) as determined by an approximated hyperglycaemic clamp. Treated horses developed glycosuria, hyperglycaemia (10.7 ± 0.78. mmol/L) and hyperinsulinaemia (208 ± 26.1. μIU/mL), whereas control horses did not. None of the horses became lame as a consequence of the experiment but all of the treated horses developed histopathological evidence of laminitis in at least one foot. Combined with earlier studies, the results showed that laminitis may be induced by either insulin alone or a combination of insulin and glucose, but that it is unlikely to be due to a glucose overload mechanism. Based on the histopathological data, the potential threshold for insulin toxicity (i.e. laminitis) in horses may be at or below a serum concentration of ∼200. μIU/mL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.