829 resultados para grid-connected operation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper makes a comparative study of two Soft Single Switched Quadratic Boost Converters (SSS1 and SSS2) focused on Maximum Power Point Tracking (MPPT) of a PV array using Perturb and Observe (P&O) algorithm. The proposed converters maintain the static gain characteristics and dynamics of the original converter with the advantage of considerably reducing the switching losses and Electromagnetic Interference (EMI). It is displayed the input voltage Quadratic Boost converter modeling; qualitative and quantitative analysis of soft switching converters, defining the operation principles, main waveforms, time intervals and the state variables in each operation steps, phase planes of resonant elements, static voltage gain expressions, analysis of voltage and current efforts in semiconductors and the operational curves at 200 W to 800 W. There are presented project of PI, PID and PID + Notch compensators for MPPT closed-loop system and resonant elements design. In order to analyze the operation of a complete photovoltaic system connected to the grid, it was chosen to simulate a three-phase inverter using the P-Q control theory of three-phase instantaneous power. Finally, the simulation results and experimental with the necessary comparative analysis of the proposed converters will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly in power systems, there is a trend towards the sharing of reserves and integration of markets over wide areas in order to enable increased penetration of renewable sources in interconnected power systems. In this paper, a number of simple PI and gain based Model Predictive Control algorithms are proposed for Automatic Generation Control in AC areas connected to Multi-Terminal Direct Current grids. The paper discusses how this approach improves the sharing of secondary reserves and could assist in achieving EU energy targets for 2030 and beyond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the photovoltaic generation has had greater insertion in the energy mix of the most developed countries, growing at annual rates of over 30%. The pressure for the reduction of pollutant emissions, diversification of the energy mix and the drop in prices are the main factors driving this growth. Grid tied systems plays an important role in alleviating the energy crisis and diversification of energy sources. Among the grid tied systems, building integrated photovoltaic systems suffers from partial shading of the photovoltaic modules and consequently the energy yield is reduced. In such cases, classical forms of modules connection do not produce good results and new techniques have been developed to increase the amount of energy produced by a set of modules. In the parallel connection technique of photovoltaic modules, a high voltage gain DC-DC converter is required, which is relatively complex to build with high efficiency. The current-fed isolated converters explored in this work have some desirable characteristics for this type of application, such as: low input current ripple and input voltage ripple, high voltage gain, galvanic isolation, feature high power capacity and it achieve soft switching in a wide operating range. This study presents contributions to the study of a high gain and high efficiency DC-DC converter for use in a parallel system of photovoltaic generation, being possible the use in a microinverter or with central inverter. The main contributions of this work are: analysis of the active clamping circuit operation proposing that the clamp capacitor connection must be done on the negative node of the power supply to reduce the input current ripple and thus reduce the filter requirements; use of a voltage doubler in the output rectifier to reduce the number of components and to extend the gain of the converter; detailed study of the converter components in order to raise the efficiency; obtaining the AC equivalent model and control system design. As a result, a DC-DC converter with high gain, high efficiency and without electrolytic capacitors in the power stage was developed. In the final part of this work the DC-DC converter operation connected to an inverter is presented. Besides, the DC bus controller is designed and are implemented two maximum power point tracking algorithms. Experimental results of full system operation connected to an emulator and subsequently to a real photovoltaic module are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a system to control the power injected by a photovoltaic (PV) plant on the receiving network. This control is intended to mitigate some of the negative impacts that these units may produce on such networks, while increasing the installed power of the plant. The controlled parameters are the maximum allowed value of injected active power and the corresponding power factor, whose setpoints values may be fixed or dynamic. The developed system allows a local and a remote control. The injected power and the corresponding power factor may be set by following a predetermined profile or by real time adjustments to fulfill specific operation constraints on the receiving network. The system acts by adjusting the control parameters on the PV inverters. The main goal of the system is, in the end, to control the PV plant, ensuring the accomplishment of technical constraints and, at the same time, maximizing the installed power of the PV plant, which may be an important issue concerning the economic performance of such plants

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on tests of photovoltaic systems in order to address two case studies with silicon monocrystalline and silicon polycrystalline panels, respectively. The first case is an identification of the three parameters of the single-diode equivalent circuit for modelling photovoltaic systems with conclusion about the inevitably age degradation. A comparison between experimental observed and computed I-V and V-P characteristics curves is carried out at standard test conditions. The second case is an experimental observation on a photovoltaic system connected to an electric grid in what regards the quality of the energy injected into the grid. A measuring of the harmonic content in the voltage and in the current waveforms at the terminals of the photovoltaic system is carried out in order to conclude about the conformity with the Standard EN 50160 and the IEEE 519-1992, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work; Resumo: Avanços na integracão de potência fotovoltaica e producão de energia em sistemas práticos Esta tese apresenta avanços na integração de potência e energia fotovoltaica (PV) em sistemas práticos, tais como centrais existentes ou a rede eléctrica pública. Come ça por analisar o estado corrente do fotovoltaico no mundo e aborda algumas das suas limitações. O trabalho feito para esta tese de doutoramento começou pelo desenvolvimento de um modelo para calcular os sombreamentos que ocorrem em grandes campos fotovoltaicos, e depois apresenta um estudo sobre a integração um sistema fotovoltaico em uma central eléctrica a bióg as. As ultimas secções da tese focam-se no trabalho feito para o projecto PVCROPS, que consistiu na construção e operação de dois demonstratores, cada um formado por um sistema fotovoltaico e bateria conectados a um edíficio e a rede eléctrica pública. Estes protótipos foram posteriormente utilizados para testar estratégias de gestão de energia (EMS) e para validar a operação de duas baterias avançadas (bateria de Iões de Li tio e bateria de Fluxo Redox de Van adio) e a sua utiliza ção para habitações e centrais PV. A tese está dividida em 7 capitulos: O capitulo 1 apresenta uma introdução para explicar e desenvolver as principais questões que foram investigadas nesta tese; O capitulo 2 mostra o desenvolvimento de um modelo baseado em traçados de raios para calcular sombreamentos mútuos em grandes centrais PV (com e sem seguidores); O capitulo 3 mostra a simulação da hibridização de uma central electrica a biogas com uma central PV, e utilizando o biógas como armazenamento de energia. Os capitulos 4 e 5 apresentam a construção, programação e operação inicial dos dois demonstradores (Capitúlo 4), o teste de EMS orientadas para sistemas PV em habitações (Capítulo 5). Finalmente, o capítulo 6 sugere algumas futuras linhas de investigação que poderão seguir esta tese, e o Capítulo 7 faz uma sinopse das principais conclusões deste trabalho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Smart Grid needs a large amount of information to be operated and day by day new information is required to improve the operation performance. It is also fundamental that the available information is reliable and accurate. Therefore, the role of metrology is crucial, especially if applied to the distribution grid monitoring and the electrical assets diagnostics. This dissertation aims at better understanding the sensors and the instrumentation employed by the power system operators in the above-mentioned applications and studying new solutions. Concerning the research on the measurement applied to the electrical asset diagnostics: an innovative drone-based measurement system is proposed for monitoring medium voltage surge arresters. This system is described, and its metrological characterization is presented. On the other hand, the research regarding the measurements applied to the grid monitoring consists of three parts. The first part concerns the metrological characterization of the electronic energy meters’ operation under off-nominal power conditions. Original test procedures have been designed for both frequency and harmonic distortion as influence quantities, aiming at defining realistic scenarios. The second part deals with medium voltage inductive current transformers. An in-depth investigation on their accuracy behavior in presence of harmonic distortion is carried out by applying realistic current waveforms. The accuracy has been evaluated by means of the composite error index and its approximated version. Based on the same test setup, a closed-form expression for the measured current total harmonic distortion uncertainty estimation has been experimentally validated. The metrological characterization of a virtual phasor measurement unit is the subject of the third and last part: first, a calibrator has been designed and the uncertainty associated with its steady-state reference phasor has been evaluated; then this calibrator acted as a reference, and it has been used to characterize the phasor measurement unit implemented within a real-time simulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present Ph.D. thesis aims to test and evaluate by-catch reduction devices (BRDs) that minimize the retention of undersized fish and do not penalize revenues of the fishing industry. Considering that a fraction of fish that escape from fishing gear or that are rejected at the sea probably does not survive (unaccounted mortality), it is a major concern for sustainable fisheries management, as unaccounted mortality may lead to biased stock assessment since they will tend to underestimate fishing mortality and overestimate stock size. In this context, in the present Ph.D. thesis, the escape survival (i.e. survival of the fish escaped through the trawl net codend) of the Mullus barbatus Linnaeus 1758 and the discard survival (survival of fish rejected at the sea after being hauled on deck) of Trachurus trachurus were evaluated for the first time in the central Mediterranean Sea. In conclusion, the use of underwater lights in Mediterranean trawl fisheries should be carefully regulated through ad hoc measures that are currently lacking, to minimize the potential impacts of artificial light on some already overexploited stocks. Even if further works should be carried out in the future to test BRDs performances in different areas and seasons, the T90 50 mm codend and the Grid-T45 40 mm seem promising tools to reduce the catch of undersized individuals and contribute to mitigating the current overfishing of Parapenaeus longirostris and Merluccius merluccius. The escape survival of M. barbatus was high and thanks to an improved methodology the bias in the sampling was minimized. However, for improved stock assessment of M. barbatus, the experiment should be repeated to provide accurate escape mortality estimates. While the discard survival of T. trachurus was very low and according to the landing obligation (Reg. EU 1380/2013) all the juveniles of the species should be landed.