891 resultados para genome-wide association


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ventricular system is a critical component of the central nervous system (CNS) that is formed early in the developmental stages and remains functional through the lifetime. Changes in the ventricular system can be easily discerned via neuroimaging procedures and most of the time it reflects changes in the physiology of the CNS. In this study we attempted to identify specific genes associated with variation in ventricular volume in humans. Methods. We conducted a genome wide association (GWA) analysis of the volume of the lateral ventricles among 1605 individuals of European ancestry from two community based cohorts, the Genetics of Microangiopathic Brain Injury (GMBI; N=814) and Atherosclerosis Risk in Communities (ARIC; N=791). Significant findings from the analysis were tested for replication in both the cohorts and then meta-analyzed to get an estimate of overall significance. Results. In our GWA analyses, no single nucleotide polymorphism (SNP) reached a genome-wide significance of p<10−8. There were 25 SNPs in GMBI and 9 SNPs in ARIC that reached a threshold of p<10 −5. However, none of the top SNPs from each cohort were replicated in the other. In the meta-analysis, no SNP reached the genome-wide threshold of 5×10−8, but we identified five novel SNPs associated with variation in ventricular volume at the p<10 −5 level. Strongest association was for rs2112536 in an intergenic region on chromosome 5q33 (Pmeta= 8.46×10−7 ). The remaining four SNPs were located on chromosome 3q23 encompassing the gene for Calsyntenin-2 (CLSTN2). The SNPs with strongest association in this region were rs17338555 (Pmeta= 5.28×10 −6), rs9812091 (Pmeta= 5.89×10−6 ), rs9812283 (Pmeta= 5.97×10−6) and rs9833213 (Pmeta= 6.96×10−6). Conclusions. This GWA study of ventricular volumes in the community-based cohorts of European descent identifies potential locus on chromosomes 3 and 5. Further characterization of these loci may provide insights into pathophysiology of ventricular involvement in various neurological diseases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our sleep timing preference, or chronotype, is a manifestation of our internal biological clock. Variation in chronotype has been linked to sleep disorders, cognitive and physical performance, and chronic disease. Here we perform a genome-wide association study of self-reported chronotype within the UK Biobank cohort (n=100,420). We identify 12 new genetic loci that implicate known components of the circadian clock machinery and point to previously unstudied genetic variants and candidate genes that might modulate core circadian rhythms or light-sensing pathways. Pathway analyses highlight central nervous and ocular systems and fear-response-related processes. Genetic correlation analysis suggests chronotype shares underlying genetic pathways with schizophrenia, educational attainment and possibly BMI. Further, Mendelian randomization suggests that evening chronotype relates to higher educational attainment. These results not only expand our knowledge of the circadian system in humans but also expose the influence of circadian characteristics over human health and life-history variables such as educational attainment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Fiona Leckie, Andrew MacColl, Jesús Martínez-Padilla, François Mougeot, Steve Redpath, Pablo Vergara† and Lucy M.I. Webster for samples; Keliya Bai, Daisy Brickhill, Edward Graham, Alyson Little, Daniel Mifsud, Lizzie Molyneux and Mario Röder for fieldwork assistance; Gillian Murray-Dickson and Laura Watt for laboratory assistance; Heather Ritchie for helpful comments on manuscript drafts; and all estate owners, factors and keepers for access to field sites, most particularly Stuart Young and Derek Calder (Edinglassie), Simon Blackett, Jim Davidson and Liam Donald (Invercauld and Glas Choille), Richard Cooke and Fred Taylor† (Invermark) and T. Helps (Catterick).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics and the Wellcome Trust Sanger Institute for the generation of the sequencing data. This work was funded by Wellcome Trust grant 090532/Z/09/Z (J.F.). Primary phenotyping of the mice was supported by the Mary Lyon Centre and Mammalian Genetics Unit (Medical Research Council, UK Hub grant G0900747 91070 and Medical Research Council, UK grant MC U142684172). D.A.B acknowledges support from NIH R01AR056280. The sleep work was supported by the state of Vaud (Switzerland) and the Swiss National Science Foundation (SNF 14694 and 136201 to P.F.). The ECG work was supported by the Netherlands CardioVascular Research Initiative (Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences) PREDICT project, InterUniversity Cardiology Institute of the Netherlands (ICIN; 061.02; C.A.R., C.R.B). Na Cai is supported by the Agency of Science, Technology and Research (A*STAR) Graduate Academy. The authors wish to acknowledge excellent technical assistance from: Ayako Kurioka, Leo Swadling, Catherine de Lara, James Ussher, Rachel Townsend, Sima Lionikaite, Ausra S. Lionikiene, Rianne Wolswinkel and Inge van der Made. We would like to thank Thomas M Keane and Anthony G Doran for their help in annotating variants and adding the FVB/NJ strain to the Mouse Genomes Project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Esophageal adenocarcinoma (EA) is one of the fastest rising cancers in western countries. Barrett’s Esophagus (BE) is the premalignant precursor of EA. However, only a subset of BE patients develop EA, which complicates the clinical management in the absence of valid predictors. Genetic risk factors for BE and EA are incompletely understood. This study aimed to identify novel genetic risk factors for BE and EA.Methods: Within an international consortium of groups involved in the genetics of BE/EA, we performed the first meta-analysis of all genome-wide association studies (GWAS) available, involving 6,167 BE patients, 4,112 EA patients, and 17,159 representative controls, all of European ancestry, genotyped on Illumina high-density SNP-arrays, collected from four separate studies within North America, Europe, and Australia. Meta-analysis was conducted using the fixed-effects inverse variance-weighting approach. We used the standard genome-wide significant threshold of 5×10-8 for this study. We also conducted an association analysis following reweighting of loci using an approach that investigates annotation enrichment among the genome-wide significant loci. The entire GWAS-data set was also analyzed using bioinformatics approaches including functional annotation databases as well as gene-based and pathway-based methods in order to identify pathophysiologically relevant cellular pathways.Findings: We identified eight new associated risk loci for BE and EA, within or near the CFTR (rs17451754, P=4·8×10-10), MSRA (rs17749155, P=5·2×10-10), BLK (rs10108511, P=2·1×10-9), KHDRBS2 (rs62423175, P=3·0×10-9), TPPP/CEP72 (rs9918259, P=3·2×10-9), TMOD1 (rs7852462, P=1·5×10-8), SATB2 (rs139606545, P=2·0×10-8), and HTR3C/ABCC5 genes (rs9823696, P=1·6×10-8). A further novel risk locus at LPA (rs12207195, posteriori probability=0·925) was identified after re-weighting using significantly enriched annotations. This study thereby doubled the number of known risk loci. The strongest disease pathways identified (P<10-6) belong to muscle cell differentiation and to mesenchyme development/differentiation, which fit with current pathophysiological BE/EA concepts. To our knowledge, this study identified for the first time an EA-specific association (rs9823696, P=1·6×10-8) near HTR3C/ABCC5 which is independent of BE development (P=0·45).Interpretation: The identified disease loci and pathways reveal new insights into the etiology of BE and EA. Furthermore, the EA-specific association at HTR3C/ABCC5 may constitute a novel genetic marker for the prediction of transition from BE to EA. Mutations in CFTR, one of the new risk loci identified in this study, cause cystic fibrosis (CF), the most common recessive disorder in Europeans. Gastroesophageal reflux (GER) belongs to the phenotypic CF-spectrum and represents the main risk factor for BE/EA. Thus, the CFTR locus may trigger a common GER-mediated pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) of schizophrenia have yielded more than 100 common susceptibility variants, and strongly support a substantial polygenic contribution of a large number of small allelic effects. It has been hypothesized that familial schizophrenia is largely a consequence of inherited rather than environmental factors. We investigated the extent to which familiality of schizophrenia is associated with enrichment for common risk variants detectable in a large GWAS. We analyzed single nucleotide polymorphism (SNP) data for cases reporting a family history of psychotic illness (N = 978), cases reporting no such family history (N = 4,503), and unscreened controls (N = 8,285) from the Psychiatric Genomics Consortium (PGC1) study of schizophrenia. We used a multinomial logistic regression approach with model-fitting to detect allelic effects specific to either family history subgroup. We also considered a polygenic model, in which we tested whether family history positive subjects carried more schizophrenia risk alleles than family history negative subjects, on average. Several individual SNPs attained suggestive but not genome-wide significant association with either family history subgroup. Comparison of genome-wide polygenic risk scores based on GWAS summary statistics indicated a significant enrichment for SNP effects among family history positive compared to family history negative cases (Nagelkerke's R(2 ) = 0.0021; P = 0.00331; P-value threshold <0.4). Estimates of variability in disease liability attributable to the aggregate effect of genome-wide SNPs were significantly greater for family history positive compared to family history negative cases (0.32 and 0.22, respectively; P = 0.031). We found suggestive evidence of allelic effects detectable in large GWAS of schizophrenia that might be specific to particular family history subgroups. However, consideration of a polygenic risk score indicated a significant enrichment among family history positive cases for common allelic effects. Familial illness might, therefore, represent a more heritable form of schizophrenia, as suggested by previous epidemiological studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms' ability to adapt to a changing environment. In long-term studies of natural populations, individuals are often marked at one point in their life and then repeatedly recaptured. It is therefore essential that a method for GWAS includes the process of repeated sampling. In a GWAS, the effects of thousands of single-nucleotide polymorphisms (SNPs) need to be fitted and any model development is constrained by the computational requirements. A method is therefore required that can fit a highly hierarchical model and at the same time is computationally fast enough to be useful. 2. Our method fits fixed SNP effects in a linear mixed model that can include both random polygenic effects and permanent environmental effects. In this way, the model can correct for population structure and model repeated measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a generalized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on observed genotypes from a long-term study of collared flycatchers in Sweden. 3. The method we present here was successful in estimating permanent environmental effects from simulated repeated measures data. Additionally, we found that especially for variable phenotypes having large variation between years, the repeated measurements model has a substantial increase in power compared to a model using average phenotypes as a response. 4. The method is available in the R package RepeatABEL. It increases the power in GWAS having repeated measures, especially for long-term studies of natural populations, and the R implementation is expected to facilitate modelling of longitudinal data for studies of both animal and human populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22-2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08-2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29-2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22-2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08-2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29-2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r(2) = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. ^ Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5 ) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. ^ The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.^