973 resultados para gene loss


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA-dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In metazoans, bone morphogenetic proteins (BMPS) direct a myriad of developmental and adult homeostatic evens through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like. Kinasel and -2 (ALK1/ACVR1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp(+). In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sat mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by sax(P), a viable allele previously reported to be mill, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first: class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVR1-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian freshwater crayfish Cherax destructor (Crustacea: Decapoda: Parastacidae). The 15,895-bp genome is circular with the same gene composition as that found in other metazoans. However, we report a novel gene arrangement with respect to the putative arthropod ancestral gene order and all other arthropod mitochondrial genomes sequenced to date. It is apparent that 11 genes have been translocated (ND1, ND4, ND4L, Cyt b, srRNA, and tRNAs Ser(UGA), Leu(CUN), Ile, Cys, Pro, and Val), two of which have also undergone inversions (tRNAs Pro and Val). The ‘duplication/random loss’ mechanism is a plausible model for the observed translocations, while ‘intramitochondrial recombination’ may account for the gene inversions. In addition, the arrangement of rRNA genes is incompatible with current mitochondrial transcription models, and suggests that a different transcription mechanism may operate in C. destructor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [ Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 mug/mL) or leptin (2.5 mug/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real-time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8-fold and 2.5-fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese-prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and B-type NP (BNP) are hormones involved in homeostatic control of body fluid and cardiovascular regulation. Both ANP and BNP have been cloned from the heart of mammals, amphibians, and teleost fishes, while an additional cardiac peptide, ventricular NP, has been found in selected species of teleost fish. However, in chicken, BNP is the primary cardiac peptide identified thus far. In contrast, the types of NP/s present in the reptilian heart are unknown, representing a considerable gap in our understanding of NP evolution. In the present study, we cloned and sequenced a BNP cDNA from the atria of representative species of reptile, including crocodile, lizard, snake, and tortoise. In addition, we cloned BNP from the pigeon atria. The reptilian and pigeon BNP cDNAs had ATTTA repeats in the 3′ untranslated region, as observed in all vertebrate BNP mRNAs. A high sequence homology was evident when comparing reptile and pigeon preproBNP with the previously identified chicken preproBNP. In particular, the predicted mature BNP-29 was identical between crocodile, tortoise, and chicken, with pigeon having a single amino acid substitution; lizard and snake BNP had seven and nine substitutions, respectively. Furthermore, an ANP cDNA could only be cloned from the tortoise atria. Since ANP was not isolated from the heart of any non-chelonian reptile and appears to be absent in birds, we propose that the ANP gene has been lost after branching of the turtles in the amniote line. This data provides new avenues for research on NP function in reptiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-molecular-mass rhoptry complex of Plasmodium falciparum consists of three proteins, rhoptry-associated protein 1 (RAP1), RAP2, and RAP3. The genes encoding RAP1 and RAP2 are known; however, the RAP3 gene has not been identified. In this study we identify the RAP3 gene from the P. falciparum genome database and show that this protein is part of the low-molecular-mass rhoptry complex. Disruption of RAP3 demonstrated that it is not essential for merozoite invasion, probably because RAP2 can complement the loss of RAP3. RAP3 has homology with RAP2, and the genes are encoded on chromosome 5 in a head-to-tail fashion. Analysis of the genome databases has identified homologous genes in all Plasmodium spp., suggesting that this protein plays a role in merozoite invasion. The region surrounding the RAP3 homologue in the Plasmodium yoelii genome is syntenic with the same region in P. falciparum; however, there is a single gene. Phylogenetic comparison of the RAP2/3 protein family from Plasmodium spp. suggests that the RAP2/3 duplication occurred after divergence of these parasite species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary Hemochromatosis (HH) is a genetic disease caused by high iron absorption and deposition in several organs. This accumulation results in clinical disturbances such as cirrhosis, arthritis, cardiopathies, diabetes, sexual disorders and skin darkening. The H63D and C282Y mutations are well defined in the hemochromatosis etiology. The aim of this paper was that of identifying the H63D and C282Y genetical mutations in the hemochromatosis gene and the frequency assessment of these mutations in the HFE protein gene in patients with hyperferritin which are sent to the DNA Center laboratory in Natal, state of Rio Grande do Norte. This paper also evaluates the HH H63D and C282Y gene mutations genotype correlation with the serum ferritin concentration, glucose, alanine aminotransferasis, aspartato aminotransferasis, gama glutamil transferasis and with the clinical complications and also the interrelation with life habits including alcoholism and iron overload. The biochemical dosages and molecule analyses are done respectively by the enzymatic method and PCR with enzymatic restriction. Out of the 183 patients investigated, 51,4% showed no mutation and 48,6% showed some type of mutation: 5,0% were C282Y heterozygous mutation; 1,1%, C282Y homozygous mutation; 31%, H63D heterozygous mutation; 8,7%, H63D homozygous mutation; and 3,3%, heterozygous for the mutation in both genes. As to gender, we observed a greater percentage of cases with molecular alteration in men in relation to women in the two evaluated mutations. The individuals with negative results showed clinical and lab signs which indicate hemochromatosis that other genes could be involved in the iron metabolism. Due to the high prevalence of hemochromatosis and taking into account that hemochromatosis is considered a public health matter, its gravity being preventable and the loss treatment toxicity, the early genetic diagnosis is indicated, especially in patients with high ferritin, and this way it avoids serious clinical manifestations and increases patients' life expectation. Our findings show the importance of doing such genetic studies in individuals suspected of hereditary hemochromatosis due to the high incidence of such a hereditary disease in our region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bola-DRB3 gene participates in the development of the immune response and is highly polymorphic. For these reasons, it has been a candidate gene in studies of the genetic basis of disease resistance and in population genetic analysis. South American native cattle breeds have been widely replaced by improved exotic breeds leading to a loss of genetic resources. In particular South American native breeds have high levels of fertility and disease resistance. This work describes genetic variability in the BoLA-DRB3 gene in native (Caracu, Pantaneiro, Argentinean Creole) and exotic (Holstein, Jersey, Nelore, Gir) cattle breeds in Brazil and Argentina. PCR-RFLP alleles were identified by combining the restriction patterns for the BoLA-DRB3.2 locus obtained with RsaI, BstY, and HaeIII restriction enzymes. Allelic frequencies and deviations from the Hardy-Weinberg equilibrium were also calculated. Analysis of the 24 BoLA-DRB3 PCR-RFLP alleles identified showed differences in the allele distributions among breeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of allele-specific expression by the imprinted genes IGF2 and H19 has been correlated with a differentially methylated region (DMR) upstream to the H19 gene. The H19-DMR contains seven potential CCCTC-binding factor (CTCF) binding sites. CTCF is a chromatin insulator and a multifunctional transcription factor whose binding to the H19-DMR is suppressed by DNA methylation. Our study included a group of 41 head and neck squamous cell carcinoma (HNSCC) samples. The imprinting status of the H19 gene was analyzed in 11 out of 35 positive cases for H19 gene expression, and only 1 of them showed loss of imprinting. We detected a significant correlation (P=0.041, Fisher's exact test) between H19 expression and tumor recurrence. Among H19 positive cases, six were T2, in which five developed recurrence and/or metastasis. Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only I presented regional recurrence. These data support the hypothesis that H19 expression could be used as a prognostic marker to indicate recurrence in early stage tumors. We also examined the methylation of the CTCF binding site 1 in a subgroup of these samples. The H19 gene silencing and loss of imprinting were not correlated with the methylation pattern of the CTCF binding site 1. However, the significant correlation between H19 expression and tumor recurrence suggest that this transcript could be a marker for the progression of HNSCC. (c) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Alterations in the size of the [CAG](n) repeats of the AR gene have been described in several types tumors. The purpose of this study was to evaluate if there is an association between the AR [CAG](n) repeat alleles and the relative risk for head and neck cancer and to analyse microsatellite instability (MSI) and loss of heterozygosity (LOH) in these tumors.Design: Matched samples of blood and head and neck tumors were evaluated using two methodologies, silver-stained gels to perform the analyses of MSI and LOH, and automated analysis to confirm these results and for genotyping of the AR [CAG](n), repeat length. Sixty-nine individuals without cancer were used as a control group for both procedures. The Log-rank test was used to compare overall survival and disease-free survival curves. The Cox proportional hazards regression models were performed to determine the [CAG], repeats as an independent prognostic factor.Results: Patients with alleles <= 20 in the male group showed a correlation with lower disease-free survival (P = 0.0325) and with recurrence or metastasis (RR 2.52, CI 95%). in the female group, the allele 2 (longer allele) showed a significant lower mean of [CAG](n), repeat when compared to the control group. Microsatellite instability was detected in nine cases in both procedures. In six out of these nine cases, we observed a reduction of the AR [CAG](n) repeat length. LOH was detected in one out of 17 women informative for oral cancer in both procedures.Conclusion: These results suggest that short [CAG](n) repeat length (: 20) polymorphism is associated with poor prognosis in a subset of male patients with head and neck cancer and that AR gene microsatellite instability is uncommon in these tumors. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Suppressor of cytokine signaling 3 (SOCS3) is an inducible endogenous negative regulator of signal transduction and activator of transcription 3 (STAT3). Epigenetic silencing of SOCS3 has been shown in head and neck squamous cell carcinoma (HNSCC), which is associated with increased activation of STAT3. There is scarce information on the functional role of the reduction of SOCS3 expression and no information on altered subcellular localization of SOCS3 in HNSCC.Methodology/Principal Findings: We assessed endogenous SOCS3 expression in different HNSCC cell lines by RT-qPCR and western blot. Immunofluorescence and western blot were used to study the subcellular localization of endogenous SOCS3 induced by IL-6. Overexpression of SOCS3 by CMV-driven plasmids and siRNA-mediated inhibition of endogenous SOCS3 were used to verify the role of SOCS3 on tumor cell proliferation, viability, invasion and migration in vitro. In vivo relevance of SOCS3 expression in HNSCC was studied by quantitative immunohistochemistry of commercially-available tissue microarrays. Endogenous expression of SOCS3 was heterogeneous in four HNSCC cell lines and surprisingly preserved in most of these cell lines. Subcellular localization of endogenous SOCS3 in the HNSCC cell lines was predominantly nuclear as opposed to cytoplasmic in non-neoplasic epithelial cells. Overexpression of SOCS3 produced a relative increase of the protein in the cytoplasmic compartment and significantly inhibited proliferation, migration and invasion, whereas inhibition of endogenous nuclear SOCS3 did not affect these events. Analysis of tissue microarrays indicated that loss of SOCS3 is an early event in HNSCC and was correlated with tumor size and histological grade of dysplasia, but a considerable proportion of cases presented detectable expression of SOCS3.Conclusion: Our data support a role for SOCS3 as a tumor suppressor gene in HNSCC with relevance on proliferation and invasion processes and suggests that abnormal subcellular localization impairs SOCS3 function in HNSCC cells.