960 resultados para gel permeation chromatography
Resumo:
A review of ultrafiltration (UF) theory and equipment has been made. Dextran is fractionated industrially by ethanol precipitation, which is a high energy intensive process. The aims of this work were to investigate the fractionation of dextran using UF and to compare the efficiency and costs of UF fractionation with ethanol fractionation. This work is the continuation of research conducted at Aston, which was concerned with the fractionation of dextran using gel permeation chromatography (GPC) and hollow fibre UF membranes supplied by Amicon Ltd. Initial laboratory work centred on determining the most efficient make and configuration of membrane. UF membranes of the Millipore cassette configuration, and the DDS flat-sheet configuration, were examined for the fracationation of low molecular weight (MW) dextran. When compared to Amicon membranes, these membranes were found to be inferior. DDS membranes of 25 000 and 50 000 MW cut-offs were shown to be capable of fractionating high MW dextran with the same efficiency as GPC. The Amicon membranes had an efficiency comparable to that of ethanol fractionation. To increase this efficiency a theoretical UF membrane cascade was adopted to utilize favourable characteristics encountered in batch mode membrane experiments. The four stage cascade used recycled permeates in a counter- current direction to retentate flow, and was operated 24 hours per day controlled by a computer. Using 5 000 MW cut-off membranes the cascade improved the batch efficiency by at least 10% for a fractionation at 6 000 MW. Economic comparisons of ethanol fractionation, combined GPC and UF fractionation, and UF fractionation of dextran were undertaken. On an economic basis GPC was the best method for high MW dextran fractionation. When compared with a plant producing 100 tonnes pa of clinical dextran, by ethanol fractionation, a combined GPC and UF cascade fractionation could produce savings on operating costs and an increased dextran yield of 5%.
Resumo:
The chromosomal ß-lactamase of Pseudomonas aeruginosa SAlconst (a derepressed laboratory strain) was isolated and purified. Two peaks of activity were observed on gel permeation chromatography (one major peak mol. wt. 45 kD and one minor peak of 54 kD). Preparations from 12 clinical derepressed strains showed identical results. Chromosomal ß-lactamase production in both normal and derepressed P. aeruginosa strains was induced both by iron restricted growth conditions and by penicillin G. The majority of the enzyme (80-90%) was found in the periplasm and cytoplasm but a significant amount (2-20%) was associated with the outer membrane (OM). The growth conditions did not affect the distribution of the enzyme between subcellular fractions although higher activity was found in the cells grown under iron limitation and/ or in the presence of ß-lactams. The penicillanate sulphone inhibitor, tazobactam, displayed irreversible kinetics whilst cloxacillin, cefotaxime, ampicillin and penicillin G were all competitive inhibitors of the enzyme. Similar results were obtained for the Enterobacter cloacae P99 [ß-lactamase, but tazobactam displayed a non-classical kinetic pattern for the Staphylococcus aureus PC1 ß-lactamase. The residues involved in ß-lactam hydrolysis by the P aeruginosa SAlconst enzyme were detennined by affinity labelling with tazobactam. A tryptic digestion fragment of the inhibited enzyme contained the amino acids D, T, S, E, P, G, A, C, V, M, I, Y, F, H, K, R. This suggests the involvement of the conserved SVSK, DAE and KTG motifs found in all penicillin sensitive proteins. A model of the 3-D structure of the active site of the P aeruginosa SAlconst chromosomal ß-!actamase was constructed from the published amino acid sequence of P aeruginosa chromosomal ß-lactamase and the a-carbon coordinates of the S. aureus PCI ß-lactamase by homology modelling and energy minimisation. The crystal structure of tazobactam was determined and energy minimised. Computer graphics docking identified Ser 72 as a possible residue involved in a secondary attack on the C5 position of tazobactam after initial ß-lactam hydrolysis by serine 70. The enhanced activity of tazobactam over sulbactam might be explained by the triazole substituent which might participate in favourable hydrogen bonding between N3 and active site residues.
Resumo:
There are currently few biomaterials which combine controlled degradation rates with ease of melt processability. There are however, many applications ranging from surgical fixation devices to drug delivery systems which require such combination properties. The work in this thesis is an attempt to increase the availability of such materials. Polyhydroxybutyrate-polyhydroxyvalerate copolymers are a new class of potentially biodegradable materials, although little quantitative data relating to their in vitro and in vivo degradation behaviour exists. The hydrolytic degradation of these copolymers has been examined in vitro under conditions ranging from `physiological' to extremes of pH and elevated temperature. Progress of the degradation process was monitored by weight loss and water uptake measurement, x-ray diffractometry, optical and electron microscopy, together with changes in molecular weight by gel permeation chromatography. The extent to which the degradation mechanism could be modified by forming blends with polysaccharides and polycaprolactone was also investigated. Influence of the valerate content, molecular weight, crystallinity, together with the physical form of the sample, the pH and the temperature of the aqueous medium on the hydrolytic degradation was investigated. Its progress was characterised by an initial increase in the wet weight, with concurrent decrease in the dry weight as the amorphous regions of the polymer are eroded, thereby producing an increase in matrix porosity. With the polysaccharide blends, this initial rate is dramatically affected, and erosion of the polysaccharide from the matrix markedly increases the internal porosity which leads to the eventual collapse of the matrix, a process which occurs, but less rapidly, in the degradation of the unblended polyhydroxybutyrate-polyhydroxyvalerate copolymers. Surface energy measurement and goniophotometry proved potentially useful in monitoring the early stages of the degradation, where surface rather than bulk processes predominate and are characterised by little weight loss.
Resumo:
A hot filtration unit downstream of a 1kg/h fluidised bed fast pyrolysis reactor was designed and built. The filter unit operates at 450oC and consists of 1 exchangeable filter candle with reverse pulse cleaning system. Hot filtration experiments up to 7 hours were performed with beech wood as feedstock. It was possible to produce fast pyrolysis oils with a solid content below 0.01 wt%. The additional residence time of the pyrolysis vapours and secondary vapour cracking on the filter cake caused an increase of non-condensable gases at the expense of organic liquid yield. The oils produced with hot filtration showed superior quality properties regarding viscosity than standard pyrolysis oils. The oils were analysed by rotational viscosimetry and gel permeation chromatography before and after accelerated aging. During filtration the separated particulates accumulate on the candle surface and build up the filter cake. The filter cake leads to an increase in pressure drop between the raw gas and the clean gas side of the filter candle. At a certain pressure drop the filter cake has to be removed by reverse pulse cleaning to regenerate the pressure drop. The experiments showed that successful pressure drop recovery was possible during the initial filtration cycles, thereafter further cycles showed minor pressure drop recovery and therefore a steady increase in differential pressure. Filtration with pre-coating the candle to form an additional layer between the filter candle and cake resulted in total removal of the dust cake.
Resumo:
An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.
Resumo:
A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa.
Resumo:
Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of a novel heterocyclic–telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.
Resumo:
Size-exclusion or gel filtration chromatography is one of the most popular methods for determining the sizes of proteins. Proteins in solution, or other macromolecules, are applied to a column with a defined support medium. The behavior of the protein depends on its size and that of the pores in the medium. If the protein is small relative to the pore size, it will partition into the medium and emerge from the column after larger proteins. Besides a protein's size, this technique can also be used for protein purification, analysis of purity, and study of interactions between proteins. In this unit protocols are provided for size-exclusion high-performance liquid chromatography (SE-HPLC) and for conventional gel filtration, including calibration of columns (in terms of the Stokes radius) using protein standards.
Resumo:
The coat protein of belladonna mottle virus (a tymovirus) was cleaved by trypsin and chymotrypsin, and the peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase, and ion pair chromatography. The peptides were sequenced manually using the 4-N, N-dimethylaminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double-coupling method. The chymotryptic peptides were aligned by overlapping sequences of tryptic peptides and by homology with another tymovirus, eggplant mosaic virus. The belladonna mottle virus is more closely related to eggplant mosaic virus than to turnip yellow mosaic virus, the type member of this group, as evident from the sequence homologies of 57 and 32%, respectively. The accumulation of basic residues at the amino terminus implicated in RNA-protein interactions in many spherical plant viruses was absent in all the three sequences. Interestingly, the amino-terminal region is the least conserved among the tymoviruses. The longest stretch of conserved sequence between belladonna mottle virus and eggplant mosaic virus was residues 34-44, whereas it was residues 96-102 in the case of belladonna mottle virus and turnip yellow mosaic virus. A tetrapeptide in the region (residues 154-157) was found to be common for all the three sequences. It is possible that these conserved regions (residues 34-44, 96-102, 154-157) are involved in either intersubunit or RNA-protein interactions.
Resumo:
A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.