953 resultados para gastrointestinal stromal tumors
Resumo:
Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5' region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, >= 3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients.
Resumo:
Twenty-nine canine cutaneous mast cell tumors (MCTs) were morphometrically analyzed with regard to mean nuclear area (MNA) using cytopathology smears. The results showed a correlation between MNA and survival. When graded into 2 morphometrically different groups, there were statistically significant differences among high- and low-grade MCTs, regarding both Romanowsky-type stain and hematoxylin and eosin. Cytomorphometry could also separate histologic grade II tumors with better prognosis from the more aggressive MCTs. The results indicated that nuclear morphometry on cytopathology preparations can predict the biological behavior of cutaneous MCTs in dogs in an independent manner, yielding a rapid and reproducible diagnosis, which renders the method useful for veterinary oncology.
Resumo:
Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.
Resumo:
Background: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods: In this study, gene expression profiles of CD34(+) cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results: In CD34(+) cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value <= 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value <= 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions: These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34(+) cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.
Resumo:
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Resumo:
This trial was carried out in Piracicaba, Sao Paulo State. Brazil. to comparatively evaluate the degree of resistance to naturally acquired gastrointestinal nematode infections in sheep of the following genetic groups purebred Santa Ines (SI), SI crossbred with Dorper (DO x SI), lie de France (IF x SI), Suffolk (SU x SI), and Texel (TE < SI) Fifteen ewes from each group were raised indoors until 12 months of age. At this age, they were moved to pasture that was naturally contaminated by nematode infective larvae and were evaluated from December to May. 2007. Rainfall ranged from 267 mm in January to 37 mm in April Maximum and minimum mean temperatures ranged from 32 5 degrees C to 19 0 degrees C in March and from 25.9 degrees C to 12.8 degrees C in May. There was an increase in the mean number of eggs per gram of feces (EPG) after animals were placed on pasture with significant difference between the SI (80 EPG) and IF x SI (347 EPG) groups in January: and the DO x SI (386 EPG) and TE x SI (258 EPG) groups in May. The highest mean fecal egg count (FEC), 2073 EPG, was recorded for the TE x SI group in February. All groups showed a progressive reduction in body weight throughout the experiment of 12.0% (TE x SI) to 15.9% (SU x SI). In general. the animals with the highest FEC presented the lowest packed cell volumes (PCV): the highest correlation coefficient between FEC x PCV occurred in the SU x SI sheep in January (r = -0.70; P < 0.01). Similarly, there was an inverse relationship between FEC and blood eosinophil Values, with the highest correlation coefficient in the TE x SI sheep in February (r = -0.64; P < 0.05). Immunoglobulin G (IgG) levels against Haemonchus contortus antigens increased in all groups as a result of the exposure to parasites and remained relatively constant until the end of the study, with the exceptions of SU x SI and TE x SI, which showed a rise in IgG levels during the last sampling that coincided with a reduction in mean FEC. In conclusion. crossbreeding Santa Ines sheep with any of the breeds evaluated can result in a production increase and the maintenance of a satisfactory degree of infection resistance, especially against H. contortus and Trichostrongylus colubriformis. the major nematodes detected in this flock. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on Lactobacillus acidophilus La-5 viability and resistance to gastric and enteric simulated conditions in synbiotic guava mousses effects were investigated. Refrigerated mousses supplemented with WPC presented the best probiotic viability. ranging from 7.77 to 6.24 log cfu/g during 28 days of storage. The highest probiotic populations, above 7.45 log cfu/g, were observed for all frozen mousses during 112 days of storage. Decreased L acidophilus survival during the in vitro gastrointestinal simulation was observed both for refrigerated and frozen mousses. Nonetheless, for the refrigerated mousses, the addition of inulin enhanced the probiotic survival during the in vitro assays in the first week of storage. L acidophilus survival in simulated gastrointestinal fluids was also improved through freezing. The frozen storage may be used to provide increased shelf-life for synbiotic guava mousses. Even though the protective effect of inulin and WPC on the probiotic microorganism tested was shown to be more specific for the refrigerated products, the partial replacement of milk fat by these ingredients may also help, as it improves the nutritional value of mousses in both storage conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the influence of gastrointestinal environmental factors (pH, digestive enzymes, food components, medicaments) on the survival of Lactobacillus casei Shirota and Lactobacillus casei LC01, using a semi-dynamic in vitro model that simulates the transit of microorganisms through the human GIT. The strains were first exposed to different simulated gastric juices for different periods of time (0, 30, 60 and 120 min), and then to simulated intestinal fluids for zero, 120, 180 and 240 min, in a step-wise format. The number of viable cells was determined after each step. The influence of food residues (skim milk) in the fluids and resistance to medicaments commonly used for varied therapeutic purposes (analgesics, antiarrhythmics, antibiotics, antihistaminics, proton pump inhibitors, etc.) were also evaluated. Results indicated that survival of both cultures was pH and time dependent, and digestive enzymes had little influence. Milk components presented a protective effect, and medicaments, especially anti-inflammatory drugs, influenced markedly the viability of the probiotic cultures, indicating that the beneficial effects of the two probiotic cultures to health are dependent of environmental factors encountered in the human gastrointestinal tract.
Resumo:
Metalloproteinases, especially metal loprotemase-2 (MMP-2), are known for their role in the degradation of the extracellular matrix. Nevertheless, a thorough understanding of MMP-2 expression in neoplastic lesions of the uterine cervix has yet to be accomplished. This study aimed to analyze the MMP-2 expression in cervical intraepithelial neoplasia III (CIN3) and in cervical squamous cell carcinoma, in tumor cells and adjacent stromal cells. MMP-2 expression was assessed by an immunohistochernical technique. MMP-2 expression was greater in the stromal cells of invasive carcinomas than in CIN3 (p < 0.0001). MMP-2 expression in stromal cells correlates with the clinical stage, gradually increasing as the tumor progresses (p = 0.04). This study corroborates that stromal cells play an important role in tumor invasion and progression, mediated by the progressive enhancement of MMP-2 expression from CIN3 to advanced invasive tumor. The intense MMP-2 expression most probably is associated with poor tumor prognosis.
Resumo:
Autologous hematopoietic stem cell transplantation (HSCT) has proved efficient to treat hematological malignancies. However, some patients fail to mobilize HSCs. It is known that the microenvironment may undergo damage after allogeneic HSCT. However little is known about how chemotherapy and growth factors contribute to this damage. We studied the stromal layer formation(SLF) and velocity before and after HSC mobilization, through long-term bone marrow culture from 22 patients and 10 healthy donors. Patients` SLF was similar at pre- (12/22)and post-mobilization (9/20), however for controls this occurred more at pre- mobilization (9/10; p=0.03). SLF velocity was higher at pre than post-mobilization in both groups. Leukemias and multiple myeloma showed faster growth of SLF than lymphomas at post-mobilization, the latter being similar to controls. These findings could be explained by less uncommitted HSC in controls than patients at post-mobilization. Control HSCs may migrate more in response to mobilization, resulting in a reduced population by those cells.
Resumo:
Fluoxetine (FIX) is a drug commonly used as antidepressant. However, its effects on tumorigenesis remain controversial. Aiming to evaluate the effects of FIX treatment on early malignant changes, we analyzed serotonin (5-HT) metabolism and recognition, aberrant crypt foci (ACF), proliferative process, microvessels, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) expression in colon tissue. Male Wistar rats received a daily FLX-gavage (30 mg kg(-1)) and, a single dose of 1.2 dimethylhydrazine (DMH; i.p., 125 mg kg(-1)). After 6 weeks of FIX-treatment, our results revealed that FIX and nor-fluoxetine (N-FIX) are present in colon tissue, which was related to significant increase in serotonin (5-HT) levels (P < 0.05) possibly through a blockade in SERT mRNA (serotonin reuptake transporter; P < 0.05) resulting in lower 5-hydroxyindoleacetic acid (5-HIAA) levels (P < 0.01) and, 5-HT2C receptor mRNA expressions. FIX-treatment decreased dysplastic ACF development (P < 0.01) and proliferative process (P < 0.001) in epithelia. We observed a significant decrease in the development of malignant microvessels (P < 0.05), VEGF (P < 0.001), and COX-2 expression (P < 0.01). These findings suggest that FIX may have oncostatic effects on carcinogenic colon tissue, probably due to its modulatory activity on 5-HT metabolism and/or its ability to reduce colonic malignant events. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Probiotic properties of Lactobacillus amylovorus DSM 16698 were previously demonstrated in piglets. Here, its potential as a human probiotic was studied in vitro, using the TIM-1 system, which is fully validated to simulate the human upper gastrointestinal tract. To evaluate the effect of the food matrix composition on the survival of L amylovorus DSM 16698 in TIM-1, the microorganism was inoculated alone or with prebiotic galactooligosaccharides (GOS), partially skimmed milk (PSM) and/or commercial probiotic Bifidobacterium animalis subsp. lactis Bb-12 (Bb-12). Samples were collected from TIM-1 for six hours, at one-hour intervals and L amylovorus populations were enumerated on MRS agar plates with confirmation of identity of selected isolates by randomly amplified polymorphic DNA (RAPD) fingerprinting. The cumulative survival for L amylovorus alone (control) was 30% at the end of the experiment (t = 6 h). Co-administration of L amylovorus with GOS. PSM and/or Bb-12 increased its survival in comparison with the control significantly from the 4th hour after ingestion onwards (P<0.05). Furthermore, by the use of High Performance Anion Exchange Chromatography, both L amylovorus and Bb-12 were observed to promptly degrade GOS compounds in samples collected from TIM-1, as assessed at t = 2 h. Hence, food matrix composition interfered with survival and growth of L. amylovorus during passage through TIM-1, providing leads towards optimization of probiotic properties in vivo. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.
Resumo:
Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.