983 resultados para galaxies: nuclei


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of the dinuclear system (DNS) model, the production cross sections of superheavy nuclei Hs (Z=108) and Z=112 combined with different reaction systems are analyzed systematically. It is found that the mass asymmetries and the reaction Q values of the projectile target combinations play a very important role on the formation cross sections of the evaporation residues. Both methods to obtain the fusion probability by nucleon transfer by solving a set of microscopically derived master equations along the mass asymmetry degree of freedom (ID) and distinguishing protons and neutrons of fragments (2D) are compared with each other and also with the available experimental data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts have been made in our group to study the band structure of odd-odd nuclei in the A similar to 170 mass region. We aimed at providing new data of high-spin states and searching for the low-spin signature inversion in the 2-qp bands built on the pi h(9/2) circle times nu i(13/2) and pi i(13/2)circle times nu i(13/2) configurations. In this talk, main results of our work will be summarized, and some systematic features of signature inversion discussed. The spin and parity assignments for the pi i(13/2) circle times nu i(13/2) band in (184)An could be regarded as firm providing a good example for systematic and theoretical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental advances have made it possible to study spectroscopy in very heavy nuclei. We show that from the excited high-spin structure of transfermium isotopes, one may gain useful information on single-particle states for the superheavy mass region, which is the key to locating the anticipated 'island of stability'. In this work, we employ the Projected Shell Model for Cf, Fm, and No isotopes to study rotation alignment of the particles that occupy particular high-j intruder orbitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha-decay half-lives of nuclei in the ground states and Isomeric states have been calculated within the WKB approximation and Royer's formulas. The barrier in the quasimolecular shape path is determined within a generalized liquid drop model (GLDM). in which the centrifugal potential energy has been introduced to study the unfavored a-decay The agreement between the calculated results and experimental data indicates the reliability of studying alpha-decay of isomeric states with the generalized liquid drop model We find that their is no significant difference of preformation probability between Isomeric states and the corresponding ground states generally in favored alpha-decay Additionally. we extended Royer's formulas by taking account of the role of centrifugal harrier to study the unfavored alpha-decay, and some predicts oil the a decay half-lives of Isomers are made Finally. the effects of angular momontum transfer and Q(alpha) on alpha-decay half-life have been discussed Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mirror nuclei N-12 and B-12 are separated by the Radioactive Ion Beam Line in Lanzhou (RIBLL) at HIRFL from the breakup of 78.6 MeV/u N-14 on a Be target. The total reaction cross-sections of N-12 at 34.9 MeV/u and B-12 at 54.4 MeV/u on a Si target have been measured by using the transmission method. Assuming N-12 consists of a C-11 core plus one halo proton, the excitation function of N-12 and B-12 on a Si target and a C target were calculated with the Glauber model. It can fit the experimental data very well. The characteristic halo structure for N-12 was found with a large diffusion of the protons density distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the generalized liquid drop model (GLDM) and improved Royer's formula, we investigate the branching ratios and half-lives of alpha-decay to the members of the ground-state rotational bands of heavy even-even Fm and No isotopes. The calculated results are in good agreement with the available experimental data and some useful predictions are provided for future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced crystallization of polyamide-1010 (PA1010) or nylon-1010 containing heterogeneous nuclei (neodymium oxide, Nd2O3) is discussed in this paper by Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC). The results show that at low dosage the crystallinities of the irradiated specimens increase, while crystallite size (L(hkl)) decreases, indicating that some new crystallites are produced in the course of irradiation. The new centers were brought about in the fold surface of the lamellae. Copyright (C) 1997 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with radiation effects on PA1010 containing heterogeneous nuclei (Nd2O3). With the help of DSC, WAXD and ESR techniques, the change in the crystallinity and the perfection of the crystal of irradiated PA1010 containing heterogeneous nuclei were studied. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiated polyamide-1010 (PA1010) and PA1010 containing 0.5% (wt) heterogeneous nuclei were studied by ESR, WAXD, DSC and the determination of gel fractions. The fold surface of the lamellae plays an important role in the effects of radiation on crystalline PA1010. The results show that the direct radiation effects on both samples vary, while after being heated to 220 degrees C, the final radiation effects are identical, regardless of the difference in the amount of the fold surface of the lamellae. The post-radiation effects result predominantly from the fold surface.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of configuration mixing in the Pt region is investigated. For this chain of isotopes, the nature of the ground state changes smoothly, being spherical around mass A~174 and A~192 and deformed around the midshell N=104 region. This has a dramatic effect on the systematics of the energy spectra as compared to the systematics in the Pb and Hg nuclei. Interacting boson model with configuration mixing calculations are presented for gyromagnetic factors, α-decay hindrance factors, and isotope shifts. The necessity of incorporating intruder configurations to obtain an accurate description of the latter properties becomes evident. © 2011 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells sense cues in their surrounding microenvironment. These cues are converted into intracellular signals and transduced to the nucleus in order for the cell to respond and adapt its function. Within the nucleus, structural changes occur that ultimately lead to changes in the gene expression. In this study, we explore the structural changes of the nucleus of human mesenchymal stem cells as an effect of topographical cues. We use a controlled nanotopography to drive shape changes to the cell nucleus, and measure the changes with both fluorescence microscopy and a novel light scattering technique. The nucleus changes shape dramatically in response to the nanotopography, and in a manner dependent on the mechanical properties of the substrate. The kinetics of the nuclear deformation follows an unexpected trajectory. As opposed to a gradual shape change in response to the topography, once the cytoskeleton attains an aligned and elongation morphology on the time scale of several hours, the nucleus changes shape rapidly and intensely.