911 resultados para freshwater snails
Resumo:
Published and unpublished observations on geographical distribution of Biomphalaria snails in the State of Minas Gerais, Brazil, were compiled. This work is aimed at knowing the present occurrence of Biomphalaria species in this region, and at contributing to the elaboration of the planorbid chart of Minas Gerais. In malacological surveys, performed by several researchers, the presence of seven species of this genus was recorded. Those planorbids were found in 12 mesoregions, in 283 (33.1%) municipalities out of 853 with the following distribution: B. glabrata (185 municipalities), B. straminea (125), B. tenagophila (58), B. peregrina (57), B. schrammi (26), B. intermedia (20) and B. occidentalis (2). B. glabrata and B. tenagophila are found naturally infected by Schistosoma mansoni in Minas Gerais. In 24 municipalities the three snail hosts of S. mansoni in Brazil, B. glabrata, B. tenagophila and B. straminea, are present.
Resumo:
A new myxoporean species is described from a freshwater fish in Brazil. Myxobolus absonus sp. n. was found infecting Pimelodus maculatus captured in the river Piracicaba, State of São Paulo, Brazil. Cysts were found free in the opercular cavity. The spores are large (length-15.7 ± 1.5 µm, width-10.2 ± 0.7 µm; mean ± S.D.) and oval in shape, with the anterior end slightly pointed. The spore valves are relatively thin, smooth, and asymmetrical in a frontal view. The polar capsules are pyriform in shape, and unequal in size; the largest are 6.4 ± 0.7 µm long and 3.6 ± 0.5 µm wide, while the smallest are 4.2 ± 0.6 µm long and 2.5 ± 0.5 µm wide.
Resumo:
The sewage snail Physa acuta is a serious threat to certain economic plants and to the purification plant of sewage works by rendering the biofilters ineffective. Various attempts are being made to control it. The efficacy of the predacious water bugs Sphaerodema rusticum was judged experimentally, in the laboratory in the potential control of P. acuta. It is revealed that, when supplied separately, the first, second and third instar and the adult S. rusticum did not attack P. acuta belonging to 3.1-8 mm, 5.1-8 mm, 7.1-8 mm and <= 3 mm size classes respectively. In the remaining trials predation rate varied from zero to eight (average 2.3) individuals per predator per day. In experiments with P. acuta belonging to all the size classes supplied together, none, except the first instar S. rusticum, attacked the prey individuals belonging to the lowest (<= 3 mm) size class. The first and second instar S. rusticum, in both trials did not attack P. acuta larger than 4 mm and 5 mm in shell length respectively. The water bugs belonging to the third, fourth, fifth instar and adult stages though preyed upon P. acuta with 3.1-8 mm shell length. The average rate of predation by a single S. rusticum varied from 0.14-3.08 individuals per day depending upon the size of P. acuta and the stage of S. rusticum. A single S. rusticum, irrespective of instar and adult stages, destroyed on average 4.16 P. acuta daily irrespective of sizes. It is estimated that one S. rusticum could destroy 1,360 P. acuta in its life time. The results clearly indicate that the water bug S. rusticum may be used to control the snails P. acuta.
Resumo:
Identification of populations of Bulinus nasutus and B. globosus from East Africa is unreliable using characters of the shell. In this paper, a molecular method of identification is presented for each species based on DNA sequence variation within the mitochondrial cytochrome oxidase subunit I (COI) as detected by a novel multiplexed SNaPshotTM assay. In total, snails from 7 localities from coastal Kenya were typed using this assay and variation within shell morphology was compared to reference material from Zanzibar. Four locations were found to contain B. nasutus and 2 locations were found to contain B. globosus. A mixed population containing both B. nasutus and B. globosus was found at Kinango. Morphometric variation between samples was considerable and UPGMA cluster analysis failed to differentiate species. The multiplex SNaPshotTM assay is an important development for more precise methods of identification of B. africanus group snails. The assay could be further broadened for identification of other snail intermediate host species.
Resumo:
The analysis of the genetic variability related to susceptibility to Schistosoma mansoni infection in the vector of the genus Biomphalaria is important in terms of a better understanding of the epidemiology of schistosomiasis itself, the possible pathological implications of this interaction in vertebrate hosts, and the formulation of new strategies and approaches for disease control. In the present study, the genetic variability of B. glabrata strains found to be resistant or susceptible to S. mansoni infection was investigated using DNA amplification by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The amplification products were analyzed on 8% polyacrylamide gel and stained with silver. We selected 10 primers, since they have previously been useful to detect polymorphism among B. glabrata and/or B. tenagophila. The results showed polymorphisms with 5 primers. Polymorphic bands observed only in the susceptible strain. The RAPD-PCR methodology represents an adequate approach for the analysis of genetic polymorphisms. The understanding of the genetic polymorphisms associated to resistance may contribute to the future identification of genomic sequences related to the resistance/susceptibility of Biomphalaria to the larval forms of S. mansoni and to the development of new strategies for the control of schistosomiasis.
Resumo:
High doses of gamma radiation (10 Krad) in Biomphalaria tenagophila snails (Taim strain), which have been found to be resistant to Schistosoma mansoni, were not sufficient to impair their resistance to the parasite. The number of hemocytes, as well as their phagocytic activity, were not affected by irradiation, thus showing resemblance with mammal macrophages, which are resistant to gamma irradiation also.
Resumo:
In a recent outbreak of human ocular injuries that occurred in the town of Araguatins, at the right bank of Araguaia river, state of Tocantins, Brazil, along the low water period of 2005, two patients (8 and 12-year-old boys) presented inferior adherent leukoma in the left eye (OS), and peripherical uveites, with snowbanking in the inferior pars plana. The third one (13-year-old girl) showed posterior uveites in OS, also with snowbanking. Histopathological analysis of lensectomy material from the three patients and vitrectomy from the last one revealed several silicious spicules (gemmoscleres) of the freshwater sponges Drulia uruguayensis and D. ctenosclera. This work brings material evidences, for the first time in the literature, that freshwater sponge spicules may be a surprising new etiological agent of ocular pathology.
Resumo:
This study focuses on the geographic distribution of the snail of the genus Biomphalaria and evaluates its infectivity by Schistosoma mansoni in 5264 specimens collected in the municipality of Juiz de Fora, Minas Gerais, Brazil. Of the 31 locations studied, 6 were reservoirs, 11 rudimentary holding ponds, 7 irrigation ditches, 5 lakes, 1 ornamental pond, and 1 waterfall. Intermediate hosts were found only in the rudimentary ponds and ditches, which were 100% positive. Using morphological and molecular analysis techniques, B. tenagophila, B. peregrina, and B. straminea were identified. This is the first report of B. stramínea in the municipality, and evaluation of its infective potential revealed susceptibility of 25.4%. Although we did not find specimens of Biomphalaria infected by S. mansoni, the data obtained indicate the presence of intermediate hosts, especially in the irrigation ditches in Juiz de Fora, and their proximity to contaminated areas.
Resumo:
In this study, we looked at the inheritance of susceptibility and resistance to Schistosoma mansoni infection in the first generation of crossbred Biomphalaria alexandrina snails. Our ultimate goal is to use such information to develop a biological method of controlling schistosomiasis. We infected laboratory-bred snails with S. mansoni miracidia and examined cercarial shedding to determine susceptibility and resistance. Five parental groups were used: Group I contained 30 susceptible snails, Group II contained 30 resistant snails, Group III contained 15 susceptible and 15 resistant snails, Group IV contained 27 susceptible and three resistant snails and Group V contained three susceptible and 27 resistant snails. The percentage of resistant snails in the resulting progeny varied according to the ratio of susceptible and resistant parents per group; they are 7%, 100%, 68%, 45% and 97% from Groups I, II, III, IV and V, respectively. On increasing the percentage of resistant parent snails, the percentage of resistant progeny increased, while cercarial production in their susceptible progeny decreased.
Resumo:
Despite effective chemotherapy, schistosomiasis remains the second largest public health problem in the developing world. Currently, vaccination is the new strategy for schistosomiasis control. The presence of common antigenic fractions between Schistosoma mansoni and its intermediate host provides a source for the preparation of a proper vaccine. The objective of this paper is to evaluate the nucleoprotein extracted from either susceptible or resistant snails to protect against schistosomiasis. The vaccination schedule consisted of a subcutaneous injection of 50 µg protein of each antigen followed by another inoculation 15 days later. Analyses of marker enzymes for different cell organelles [succinate dehydrogenase, lactate dehydrogenase (LDH), glucose-6-phosphatase, acid phosphatase and 5'-nucleotidase] were carried out. Energetic parameters (ATP, ADP, AMP, phosphate potentials, inorganic phosphate, amino acids and LDH isoenzymes) were also investigated. The work was extended to record worm and ova counts, oogram determination in the liver and intestine and the histopathological pattern of the liver. The nucleoprotein of susceptible snails showed reduction in worm and ova counts by 70.96% and 51.31%, respectively, whereas the nucleoprotein of resistant snails showed reductions of 9.67% and 16.77%, respectively. In conclusion, we found that the nucleoprotein of susceptible snails was more effective in protecting against schistosomiasis.
Resumo:
To elucidate the mechanisms of antischistosoma resistance, drug-resistant Schistosoma mansoni laboratory isolates are essential. We developed a new method for inducing resistance to praziquantel (PZQ) using successive drug treatments of Biomphalaria glabrata snails infected with S. mansoni. Infected B. glabrata were treated three times with 100 mg/kg PZQ for five consecutive days with a one-week interval between them. After the treatment, the cercariae (LE-PZQ) produced from these snails and the LE strains (susceptible) were used to infect mice. Forty-five days after infection, mice were treated with 200, 400 or 800 mg/kg PZQ. Thirty days post-treatment, we observed that the mean number of worms recovered by perfusion was significantly higher in the group of mice infected with the LE-PZQ isolate treated with 200 and 400 mg/kg in comparison to the LE strain with the same treatment. Moreover, there was a significant difference between the ED50 (effective dose required to kill 50% of the worms) of the LE-PZQ isolate (362 mg/kg) and the LE strain (68 mg/kg). In the in vitro assays, the worms of the LE-PZQ isolate were also less susceptible to PZQ. Thus, the use of infected snails as an experimental model for development of resistance to S. mansoni is effective, fast, simple and cheap.
Resumo:
A real-time polymerase chain reaction (PCR) assay with fluorescence resonance energy transfer (FRET) hybridisation probes combined with melting curve analysis was developed to detect Schistosoma japonicum in experimentally infected snails and in faecal samples of infected mice. This procedure is based on melting curve analysis of a hybrid between an amplicon from the S. japonicum internal transcribed spacer region 2 sequence, which is a 192-bp S. japonicum-specific sequence, and fluorophore-labelled specific probes. Real-time FRET PCR could detect as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and a single egg inoculated in 100 mg of non-infected mouse faeces. All S. japonicum-infected snails and all faecal samples from infected mice were positive. Non-infected snails, non-infected mouse faeces and genomic DNA from other parasites were negative. This assay is rapid and has potential for epidemiological S. japonicum surveys in snails, intermediate hosts and faecal samples of final hosts.
Resumo:
Freshwater lymnaeid snails are crucial in defining transmission and epidemiology of fascioliasis. In South America, human endemic areas are related to high altitudes in Andean regions. The species Lymnaea diaphana has, however, been involved in low altitude areas of Chile, Argentina and Peru where human infection also occurs. Complete nuclear ribosomal DNA 18S, internal transcribed spacer (ITS)-2 and ITS-1 and fragments of mitochondrial DNA 16S and cytochrome c oxidase (cox)1 genes of L. diaphana specimens from its type locality offered 1,848, 495, 520, 424 and 672 bp long sequences. Comparisons with New and Old World Galba/Fossaria, Palaearctic stagnicolines, Nearctic stagnicolines, Old World Radix and Pseudosuccinea allowed to conclude that (i) L. diaphana shows sequences very different from all other lymnaeids, (ii) each marker allows its differentiation, except cox1 amino acid sequence, and (iii) L. diaphana is not a fossarine lymnaeid, but rather an archaic relict form derived from the oldest North American stagnicoline ancestors. Phylogeny and large genetic distances support the genus Pectinidens as the first stagnicoline representative in the southern hemisphere, including colonization of extreme world regions, as most southern Patagonia, long time ago. The phylogenetic link of L. diaphana with the stagnicoline group may give light to the aforementioned peculiar low altitude epidemiological scenario of fascioliasis.
Resumo:
In the present study, Biomphalaria snails collected from five Egyptian governorates (Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta), as well as reference control Biomphalaria alexandrina snails from the Schistosome Biological Supply Center (SBSC) (Theodor Bilharz Research Institute, Egypt), were subjected to species-specific polymerase chain reaction (PCR) assays to identify the collected species. All of the collected snails were found to be B. alexandrina and there was no evidence of the presence of Biomphalaria glabrata. Randomly amplified polymorphic DNA (RAPD)-PCR assays showed different fingerprints with varying numbers of bands for the first generation (F1) of B. alexandrina snail populations (SBSC, Giza, Fayoum, Kafr El-Sheikh, Ismailia and Damietta). The primer OPA-1 produced the highest level of polymorphism and amplified the greatest number of specific bands. The estimated similarity coefficients among the B. alexandrina populations based on the RAPD-PCR profiles ranged from 0.56 (between SBSC and Ismailia snails) to 0.72 (between Ismailia and Kafr El-Sheikh snails). Experimental infection of the F1 of progeny from the collected snails with Schistosoma mansoni (SBSC strain) showed variable susceptibility rates ranging from 15% in the Fayoum snail group to 50.3% in SBSC snails. A negative correlation was observed between the infection rates in the different snail groups and the distances separating their corresponding governorates from the parasite source. The infection rates of the snail groups and their similarity coefficients with SBSC B. alexandrina snails were positively correlated. The variations in the rates of infection of different B. alexandrina groups with S. mansoni, as well as the differences in the similarity coefficients among these snails, are dependent not only on the geographical distribution of the snails and the parasite, but also on the genetic variability of the snails. Introduction of this variability into endemic areas may reduce the ability of the parasite to infect local hosts and consequently reduce schistosomiasis epidemiology.