901 resultados para frequency-domain spectroscopy, photon migration, absorption, reduced scattering, Intralipid, temperature measurement
Resumo:
Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.
Resumo:
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Resumo:
Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.
Resumo:
Conventional absorption spectroscopy is not nearly sensitive enough for quantitative overtone measurements on submonolayer coatings. While cavity-enhanced absorption detection methods using microresonators have the potential to provide quantitative absorption cross sections of even weakly absorbing submonolayer films, this potential has not yet been fully realized. To determine the absorption cross section of a submonolayer film of ethylene diamine (EDA) on a silica microsphere resonator, we use phase-shift cavity ringdown spectroscopy simultaneously on near-IR radiation that is Rayleigh backscattered from the microsphere and transmitted through the coupling fiber taper. We then independently determine both the coupling coefficient and the optical loss within the resonator. Together with a coincident measurement of the wavelength frequency shift, an absolute overtone absorption cross section of adsorbed EDA, at submonolayer coverage, was obtained and was compared to the bulk value. The smallest quantifiable absorption cross section is σmin 2.7 × 10−12 cm2. This absorption cross section is comparable to the extinction coefficients of, e.g., single gold nanoparticles or aerosol particles. We therefore propose that the present method is also a viable route to absolute extinction measurements of single particles.
Resumo:
In this paper, a reduced-complexity soft-interference-cancellation minimum mean-square-error.(SIC-MMSE) iterative equalization method for severe time-dispersive multiple-input-multiple-output (MIMO) channels is proposed. To mitigate the severe time dispersiveness of the channel, a single carrier with cyclic prefix is employed, and the equalization is per-formed in the frequency domain. This simplifies the challenging problem of equalization in MIMO channels due to both the intersymbol interference (ISI) and the coantenna interference (CAI). The proposed iterative algorithm works in two stages. The first stage estimates the transmitted frequency-domain symbols using a low-complexity SIC-MMSE equalizer. The second stage converts the estimated frequency-domain symbols in the time domain and finds their means and variances to incorporate in the SIC-MMSE equalizer in the next iteration. Simulation results show the bit-/symbol-error-rate performance of the SIC-MMSE equalizer, with and without coding, for various modulation schemes.
Resumo:
An approach is developed for probing the thermodynamics and kinetics of irreversible electrochemical reactions on solid surfaces based on local frequency-voltage spectroscopy. For a model Li-ion conductor surface, two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at the tip-surface junction are analyzed. These studies suggest an experimental pathway for exploring local electrochemical activity in solids.
Resumo:
We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
In this study we investigated the light distribution under femtosecond laser illumination and its correlation with the collected diffuse scattering at the surface of ex-vivo rat skin and liver. The reduced scattering coefficients mu`s for liver and skin due to different scatterers have been determined with Mie-scattering theory for each wavelength (800, 630, and 490 nm). Absorption coefficients mu(a) were determined by diffusion approximation equation in correlation with measured diffused reflectance experimentally for each wavelength (800, 630, and 490 nm). The total attenuation coefficient for each wavelength and type of tissue were determined by linearly fitting the log based normalized intensity. Both tissues are strongly scattering thick tissues. Our results may be relevant when considering the use of femtosecond laser illumination as an optical diagnostic tool. [GRAPHICS] A typical sample of skin exposed to 630 nm laser light (C) 2010 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The corrosion resistance of three of the constituent phases in high copper dental amalgams has been investigated by electrochemical methods in 0.9% NaCl solution. Polarization curves show corrosion potentials most positive for gamma(1)-Ag2Hg3, followed by Ag-Cu, and gamma-Ag3Sn in agreement with the order of corrosion resistance deduced from the corrosion currents. Complex plane impedance plots at the open circuit potential showed distorted semicircles with diffusional components at low frequency for Ag-Hg and Ag-Cu, while for gamma-Ag3Sn a layer of corrosion products is formed, partially or completely covering the surface of the electrode. Impedance and noise spectra have been compared in the frequency domain, and show good agreement. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
The carbonyl complexes [WCl(CO)(3)(bipy) (HgCl)] (1), [Fe(CO)(4)(HgCl)(2)] (2) and W(CO)(6)] (3) were immobilized on a silica gel surface organofunctionalized with piperazine groups. The products obtained were studied by IR spectroscopy and small angle X-ray scattering (SAXS) techniques. The IR data show that the immobilization of heterobimetallic compounds 1 and 2, on the functionalized surface, occurred through the mercury atom, while for 3 the displacement of one CO group by the nitrogen of a piperazine molecule was observed. The data obtained from SAXS indicate that particles have a uniform size and reveal suitable modifications on the functionalized surface after immobilization of metal carbonyl complexes. The average intermolecular distance (l(ij)) for piperazine ligands on support is 8.7 Angstrom, for the metal carbonyl complex 1 it is 18.8 Angstrom, for complex 2 it is 16.2 Angstrom and for complex 3 it is 15.3 Angstrom. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
The combination of x-ray absorption spectroscopy (XAS) with UV-Vis and Raman spectroscopies or with Differential Scanning Calorimetry (DSC) has been recently carried out on the D44 beamline of DCI-LURE. The different set-ups used to perform such combinations are described and examples of combined investigations belonging to different field of materials science (coordination chemistry, sol-gel and catalysis) are presented. © Physica Scripta 2005.