934 resultados para fractional electrical drives
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
This work reports on the effect of carbon nanotube aggregation on the electrical conductivity and other network properties of polymer/carbon nanotube composites by modeling the carbon nanotubes as hard-core cylinders. It is shown that the conductivity decreases for increasing filler aggregation, and that this effect is more significant for higher cylinder volume fractions. It is also demonstrated, for volume fractions at which the giant component is present, that increasing the fraction of cylinders within clusters leads to a break of the giant component and the formation of a set of finite clusters. The decrease of the giant component with the increase of the fraction of cylinders within the cluster can be related to a decrease of the spanning probability due to a decrease of the number of cylinders between the clusters. Finally, it is demonstrated that the effect of aggregation can be understood by employing the network theory.
Resumo:
In this paper, two wind turbines equipped with a permanent magnet synchronous generator (PMSG) and respectively with a two-level or a multilevel converter are simulated in order to access the malfunction transient performance. Three different drive train mass models, respectively, one, two and three mass models, are considered in order to model the bending flexibility of the blades. Moreover, a fractional-order control strategy is studied comparatively to a classical integer-order control strategy. Computer simulations are carried out, and conclusions about the total harmonic distortion (THD) of the electric current injected into the electric grid are in favor of the fractional-order control strategy.
Resumo:
A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid.
Resumo:
This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.
Resumo:
This paper studies the evolution of the default risk premia for European firms during the years surrounding the recent credit crisis. We employ the information embedded in Credit Default Swaps (CDS) and Moody’s KMV EDF default probabilities to analyze the common factors driving this risk premia. The risk premium is characterized in several directions: Firstly, we perform a panel data analysis to capture the relationship between CDS spreads and actual default probabilities. Secondly, we employ the intensity framework of Jarrow et al. (2005) in order to measure the theoretical effect of risk premium on expected bond returns. Thirdly, we carry out a dynamic panel data to identify the macroeconomic sources of risk premium. Finally, a vector autoregressive model analyzes which proportion of the co-movement is attributable to financial or macro variables. Our estimations report coefficients for risk premium substantially higher than previously referred for US firms and a time varying behavior. A dominant factor explains around 60% of the common movements in risk premia. Additionally, empirical evidence suggests a public-to-private risk transfer between the sovereign CDS spreads and corporate risk premia.
Resumo:
Following the theoretical model of Merton (1987), we provide a new perspective of study about the role of idiosyncratic risk in the asset pricing process. More precisely, we analyze whether the idiosyncratic risk premium depends on the idiosyncratic risk level of an asset as well as the vatriation in the market-wide measure of idiosyncratic risk. As expected, we obtain a net positive risk premium for the Spanish stock market over the period 1987-2007. Our results show a positive relation between returns and individual indiosyncratic risk levels and a negative but lower relation with the aggregate measure of idiosyncratic risk. These findings have important implications for portfolio and risk management and contribute to provide a unified and coherent answer for the main and still unsolved question about the idiosyncratic risk puzzle: whether or not there exists a premium associated to this kind of risk and the sign for this risk premium.
Resumo:
Electrical resistivity, transverse magnetoresistance and thermoelectric power measurements were performed on CuS high quality single crystals in the range 1.2-300 K and under fields of up to 16 T. The zero field resistivity data are well described below 55 K by a quasi-2D model, consistent with a carrier confinement at lower temperatures, before the transition to the superconducting state. The transverse magnetoresistance develops mainly below 30 K and attains values as large as 470% for a 16 T field at 5 K, this behaviour being ascribed to a band effect mechanism, with a possible magnetic field induced DOS change at the Fermi level. The transverse magnetoresistance shows no signs of saturation, following a power law with field Delta rho/rho(0) proportional to H(1.4), suggesting the existence of open orbits for carriers at the Fermi surface. The thermoelectric power shows an unusual temperature dependence, probably as a result of the complex band structure of CuS.
Resumo:
Proper lighting is a prerequisite for obtaining a good working environment. Good lighting includes quantity and quality requirements, and should necessarily be appropriate to the activity/task being carried out, bearing in mind the comfort and visual efficiency of the worker. Apart from the advantages in the health and welfare for the workers, good lighting also leads to better job performance (faster), less errors, better safety, fewer accidents and less absenteeism. The overall effect is: better productivity.
Resumo:
Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a project consisting on the development of an Intelligent Tutoring System, for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students. One of the major goals of this project is to devise a teaching model based on Intelligent Tutoring techniques, considering not only academic knowledge but also other types of more empirical knowledge, able to achieve successfully the training of electrical installation design.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
In this work it is proposed the design of a mobile system to assist car drivers in a smart city environment oriented to the upcoming reality of Electric Vehicles (EV). Taking into account the new reality of smart cites, EV introduction, Smart Grids (SG), Electrical Markets (EM), with deregulation of electricity production and use, drivers will need more information for decision and mobility purposes. A mobile application to recommend useful related information will help drivers to deal with this new reality, giving guidance towards traffic, batteries charging process, and city mobility infrastructures (e. g. public transportation information, parking places availability and car & bike sharing systems). Since this is an upcoming reality with possible process changes, development must be based on agile process approaches (Web services).
Resumo:
With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.
Resumo:
This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.