977 resultados para fractional advection-dispersion models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locomotion has been a major research issue in the last few years. Many models for the locomotion rhythms of quadrupeds, hexapods, bipeds and other animals have been proposed. This study has also been extended to the control of rhythmic movements of adaptive legged robots. In this paper, we consider a fractional version of a central pattern generator (CPG) model for locomotion in bipeds. A fractional derivative D α f(x), with α non-integer, is a generalization of the concept of an integer derivative, where α=1. The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a network of four coupled identical oscillators which has dihedral symmetry. We study parameter regions where periodic solutions, identified with legs’ rhythms in bipeds, occur, for 0<α≤1. We find that the amplitude and the period of the periodic solutions, identified with biped rhythms, increase as α varies from near 0 to values close to unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the dynamical properties of systems with backlash and impact phenomena. This type of non-linearity can be tackled in the perspective of the fractional calculus theory. Fractional and integer order models are compared and their influence upon the emerging dynamics is analysed. It is demonstrated that fractional models can memorize dynamical effects due to multiple micro-collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proceedings of the 10th Conference on Dynamical Systems Theory and Applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La variabilité génétique actuelle est influencée par une combinaison complexe de variables historiques et contemporaines. Dès lors, une interprétation juste de l’impact des processus actuels nécessite une compréhension profonde des processus historiques ayant influencé la variabilité génétique. En se basant sur la prémisse que des populations proches devraient partager une histoire commune récente, nombreuses études, effectuées à petite échelle spatiale, ne prennent pas en considération l’effet potentiel des processus historiques. Cette thèse avait pour but de vérifier la validité de cette prémisse en estimant l’effet de la dispersion historique à grande et à petite échelle spatiale. Le premier volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la répartition des organismes à grande échelle spatiale. Pour ce faire, les moules d’eau douce du genre flotteurs (Pyganodon spp.) ont servies de modèle biologique. Les moules d'eau douce se dispersent principalement au stade larvaire en tant que parasites des poissons. Une série de modèles nuls ont été développés pour évaluer la co-occurrence entre des parasites et leurs hôtes potenitels. Les associations distinctes du flotteur de Terre-Neuve (P. fragilis) avec des espèces de poissons euryhalins permettent d’expliquer sa répartition. Ces associations distinctes ont également pu favoriser la différenciation entre le flotteur de Terre-Neuve et son taxon soeur : le flotteur de l’Est (P. cataracta). Cette étude a démontré les effets des associations biologiques historiques sur les répartitions à grande échelle spatiale. Le second volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la variabilité génétique, à petite échelle spatiale. Cette fois, différentes populations de crapet de roche (Ambloplites rupestris) et de crapet soleil (Lepomis gibbosus), dans des drainages adjacents ont servies de modèle biologique. Les différences frappantes observées entre les deux espèces suggèrent des patrons de colonisation opposés. La faible diversité génétique observée en amont des drainages et la forte différenciation observée entre les drainages pour les populations de crapet de roche suggèrent que cette espèce aurait colonisé les drainages à partir d'une source en aval. Au contraire, la faible différenciation et la forte diversité génétique observées en amont des drainages pour les populations de crapet soleil suggèrent une colonisation depuis l’amont, induisant du même coup un faux signal de flux génique entre les drainages. La présente étude a démontré que la dispersion historique peut entraver la capacité d'estimer la connectivité actuelle, à petite échelle spatiale, invalidant ainsi la prémisse testée dans cette thèse. Les impacts des processus historiques sur la variabilité génétique ne sont pas faciles à démontrer. Le troisième volet de cette thèse avait pour but de développer une méthode permettant de les détecter. La méthode proposée est très souple et favorise la comparaison entre la variabilité génétique et plusieurs hypothèses de dispersion. La méthode pourrait donc être utilisée pour comparer des hypothèses de dispersion basées sur le paysage historique et sur le paysage actuel et ainsi permettre l’évaluation des impacts historiques et contemporains sur la variabilité génétique. Les performances de la méthode sont présentées pour plusieurs scénarios de simulations, d’une complexité croissante. Malgré un impact de la différentiation globale, du nombre d’individus ou du nombre de loci échantillonné, la méthode apparaît hautement efficace. Afin d’illustrer le potentiel de la méthode, deux jeux de données empiriques très contrastés, publiés précédemment, ont été ré analysés. Cette thèse a démontré les impacts de la dispersion historique sur la variabilité génétique à différentes échelles spatiales. Les effets historiques potentiels doivent être pris en considération avant d’évaluer les impacts des processus écologiques sur la variabilité génétique. Bref, il faut intégrer l’évolution à l’écologie.