848 resultados para forming
Resumo:
A novel test method for the characterisation of flexible forming processes is proposed and applied to four flexible forming processes: Incremental Sheet Forming (ISF), conventional spinning, the English wheel and power hammer. The proposed method is developed in analogy with time-domain control engineering, where a system is characterised by its impulse response. The spatial impulse response is used to characterise the change in workpiece deformation created by a process, but has also been applied with a strain spectrogram, as a novel way to characterise a process and the physical effect it has on the workpiece. Physical and numerical trials to study the effects of process and material parameters on spatial impulse response lead to three main conclusions. Incremental sheet forming is particularly sensitive to process parameters. The English wheel and power hammer are strongly similar and largely insensitive to both process and material parameters. Spinning develops in two stages and is sensitive to most process parameters, but insensitive to prior deformation. Finally, the proposed method could be applied to modelling, classification of existing and novel processes, product-process matching and closed-loop control of flexible forming processes. © 2012 Elsevier B.V.
Resumo:
Ever increasing demands on functional integration of high strength light weight products leads to the development of a new class of manufacturing processes. The application of bulk forming processes to sheet or plate semi-finished products, sometimes in combination with conventional sheet forming processes creates new products with the requested properties. The paper defines this new class of sheet-bulk metal forming processes, gives an overview of the existing processes belonging to this class, highlights the tooling aspects as well as the resulting product properties and presents a short summary of the relevant work that has been done towards modeling and simulation. © 2012 CIRP.
Resumo:
Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.
Resumo:
A new technology called capillary forming enables transformation of vertically aligned nanoscale filaments into complex three-dimensional microarchitectures. We demonstrate capillary forming of carbon nanotubes into diverse forms having intricate bends, twists, and multidirectional textures. In addition to their novel geometries, these structures have mechanical stiffness exceeding that of microfabrication polymers, and can be used as masters for replica molding
Resumo:
Up to 20% of all sheet metal produced is scrapped as blanking skeletons. A novel process is therefore designed and examined, aiming to transform tessellating 'pre-blanks' in-plane into the real blanks required for stamping. Prior to blanking, the sheet is formed with a set of ridged dies, from which pre-blanks are cut and then flattened into true blanks. Several different approaches to designing ridged dies are evaluated by simulation and experiment, and the best results demonstrate a potential reduction in blanking yield losses for can-making from 9.3% to 6.9%. © 2013 CIRP.
Resumo:
It is well known that several morphospecies of Microcystis, such as Microcystis aeruginosa (Kutzing) Lemmermann and Microcystis viridis (A. Brown) Lemmermann can produce hepatotoxic microcystins. However, previous studies gave contradictory conclusions about microcystin production of Microcystis wesenbergii (Komarek) Komarek. In the present study, ten Microcystis morphospecies were identified in waterblooms of seven Chinese waterbodies, and Microcystis wesenbergii was shown as the dominant species in these waters. More than 250 single colonies of M. wesenbergii were chosen, under morphological identification, to examine whether M. wesenbergii produce hepatotoxic microcystin by using multiplex PCR for molecular detection of a region (mcyA) of microcystin synthesis genes, and chemical analyses of microcystin content by ELISA and HPLC for 21 isolated strains of M. wesenbergii from these waters were also performed. Both molecular and chemical methods demonstrated that M. wesenbergii from Chinese waters did not produce microcystin. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two strains of Raphidiopsis Fritsch et Rich were isolated from a fishpond in Wuhan city, China and rendered axenic, and characterized by a combination of morphological, physiological, biochemical and genetic methods. Morphologically the strains were identified as Raphidiopsis mediterranea Skuja (straight trichomes) and R. curvata Fritsch et Rich (coiled trichomes). These two strains demonstrated slight differences in optimal temperature range and GC content, while sharing some common characteristics including inability to grow hetertrophically, similar salinity tolerance (up to 0.78%) and an identical fatty acid composition. Cyanotoxins were not found in the strain of R. mediterranea, however, the strain of R. curvata contained both deoxycylindrospermopsin and cylindrospermopsin. Phylogenetic affiliations inferred from 16S rRNA gene sequences demonstrated that both Raphidiopsis strains clustered with Cylindrospermopsis, demonstrating their phylogenetic ties to Nostocaceae. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
Ten common species of Microcystis, based on the examination of water samples from the Dianchi Lake, Yunnan, China, were morphologically described, and their taxonomy was also discussed. They are Microcystis aeruginosa, M botrys, M firma, M flos-aquae, M ichthyoblabe, M novacekii, M pseudofilamentosa, M smithii, M viridis and M wesenbergii. Taxonomic status of other Microcystis species reported in China was also evaluated.
Resumo:
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.
Resumo:
A process is presented for the forming of variable cross-section I-beams by hot rolling. Optimized I-beams with variable cross-section offer a significant weight advantage over prismatic beams. By tailoring the cross-section to the bending moment experienced within the beam, around 30% of the material can be saved compared to a standard section. Production of such beams by hot rolling would be advantageous, as It combines high volume capacity with high material yields. Through controlled variation of the roll gap during multiple passes, beams with a variable cross-section have been created using shaped rolls similar to those used for conventional I-beam rolling. The process was tested experimentally on a small scale rolling mill, using plasticine as the modelling material. These results were then compared to finite element simulations of individual stages of the process conducted using Abaqus/Standard. Results here show that the process can successfully form a beam with a variable depth web. The main failure modes of the process, and the limitations on the achievable variations In geometry are also presented. Finally, the question of whether or not optimal beam geometries can be created by this process Is discussed. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale.