991 resultados para foliar boron concentration
Resumo:
Traffic emissions are an important contributor to ambient air pollution, especially in large cities featuring extensive and high density traffic networks. Bus fleets represent a significant part of inner city traffic causing an increase in exposure to general public, passengers and drivers along bus routes and at bus stations. Limited information is available on quantification of the levels, and governing parameters affecting the air pollution exposure at bus stations. The presented study investigated the bus emissions-dominated ambient air in a large, inner city bus station, with a specific focus on submicrometer particles. The study’s objectives were (i) quantification of the concentration levels; (ii) characterisation of the spatio-temporal variation; (iii) identification of the parameters governing the emissions levels at the bus station and (iv) assessment of the relationship between particle concentrations measured at the street level (background) and within the bus station. The results show that up to 90% of the emissions at the station are ultrafine particles (smaller than 100 nm), with the concentration levels up to 10 times the value of urban ambient air background (annual) and up to 4 times the local ambient air background. The governing parameters affecting particle concentration at the station were bus flow rate and meteorological conditions (wind velocity). Particle concentration followed a diurnal trend, with an increase in the morning and evening, associated with traffic rush hours. Passengers’ exposure could be significant compared to the average outdoor and indoor exposure levels.
Resumo:
Characterization of indoor particle sources from 14 residential houses in Brisbane, Australia, was performed. The approximation of PM2.5 and the submicrometre particle number concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a photometer (DustTrak) and a condensation particle counter (CPC), respectively. From the real time indoor particle concentration data and a diary of indoor activities, the indoor particle sources were identified. The study found that among the indoor activities recorded in this study, frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor particle number concentration levels by more than five times. The indoor approximation of PM2.5 concentrations could be close to 90 times, 30 times and three times higher than the background levels during grilling, frying and smoking, respectively.
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: a) conventional air distribution system with ceiling supply and return; b) conventional air distribution system with ceiling supply and return near the floor; c) underfloor air distribution system; and d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the Indoor/Outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used.
Resumo:
The human health effects following exposure to ultrafine (<100nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm-3 to 5.95 × 106 p cm-3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm-3 to 1.73 × 106 p cm-3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm-3 and 1.55 × 105 p cm-3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Both the mean axial velocity profile and the mean concentration profile showed self-similarity. Further, the stand deviation growth curve was linear. The effects of propeller speed and dye release location were also investigated.
Resumo:
Background: It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results: Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions: Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.
Resumo:
In the age of globalisation dominated by mass communication, the flow of information contributes to a big extent to the worldviews of its "global citizens". From this point of view the mass media can be seen as one of the most salient sources of cross-cultural communication. This study investigates mass communication across cultures, focusing on South East Asia (Malaysia and Singapore), Australia and Germany. The centre of attention is the Western media coverage of South East Asia and vice versa. In this context a content analysis of newspapers of the three regions has been conducted. In addition, working practices and conditions of Western foreign correspondents in South East Asia have been examined. Apart from the investigation of inter-cultural media coverage, another focus of attention will be the examination of two levels of communication: The business level, concentrating on issues like e.g. the Asian business etiquette; and the private level, looking into the transition to a different culture from the perspective of Australian and German expatriates. Apart from investigating mass communication across cultures and to provide a written analysis of the findings, a series of radio documentaries in English and in German has been produced. They cover the following issues: Foreign correspondents in South East Asia, the expatriate-lifestyle of Australians and Germans in South East Asia, business etiquette in Asia, student exchange Germany-Asia, image and prejudices East-West and Tourism.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
As part of a larger indoor environmental study, residential indoor and outdoor levels of nitrogen dioxide (NO2) were measured for 14 houses in a suburb of Brisbane, Queensland, Australia. Passive samplers were used for 48-h sampling periods during the winter of 1999. The average indoor and outdoor NO2 levels were 13.8 ± 6.3 and 16.7 ± 4.2 ppb, respectively. The indoor/outdoor NO2 concentration ratio ranged from 0.4 to 2.3, with a median value of 0.82. The results of statistic analyses indicated that there was no significant correlation between indoor and outdoor NO2 concentrations, or between indoor and fixed site NO2 monitoring station concentrations. However, there was a significant correlation between outdoor and fixed site NO2 monitoring station concentrations. There was also a significant correlation between indoor NO2 concentration and indoor submicrometre (0.007–0.808 μm) aerosol particle number concentrations. The results in this study indicated indoor NO2 levels are significantly affected by indoor NO2 sources, such as a gas stove and cigarette smoking. It implies that the outdoor or fixed site monitoring concentration alone is a poor predictor of indoor NO2 concentration.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller, which was placed in a glass-walled flume 0.4 m wide with a free surface depth of 0.15 m. The jet and scalar plume development were compared to that of a classical free round jet. Further, results pertaining to radial distribution, self similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration were presented and fitted with empirical correlations. Furthermore, propeller induced mixing and pollutant source concentration from a two-stroke engine were estimated.