945 resultados para fluvial erosion
Resumo:
The mechanisms of material removal were studied during the erosion of two unfilled elastomers (natural rubber and epoxidised natural rubber). The effects of impact velocity and of lubrication by silicone oil were investigated. The development of surface features due to single impacts and during the early stages of erosion was followed by scanning electron microscopy. The basic material removal mechanism at impact angles of both 30° and 90° involves the formation and growth of fine fatigue cracks under the tensile surface stresses caused by impact. No damage was observed after single impacts; it was found that many successive impacts are necessary for material removal. It was found that the erosion rate has a very strong dependance on impact velocity above about 50 ms-1.
Resumo:
Boronizing is a thermochemical diffusion-based process for producing iron boride layers in the surface of steel components. The boride layer is wear resistant and is very hard. Large residual stresses are found to exist in the surface layers, which are a function of substrate steel composition and heat treatment. By slow cooling from the boronizing temperature (900°C), a large compressive stress is developed in the boride layer. Hardening the steel by rapid cooling, either directly from the boronizing treatment or after subsequent austenitizing, develops tension in the coating which causes it to fracture. Tempering of the martensite produces compression in the coating, closing but not welding the cracks. The results of solid particle erosion experiments using silicon carbide, quartz, and glass bead erodents on boronized steels are presented.
Resumo:
The response of three commercial weld-hardfacing alloys to erosive wear has been studied. These were high chromium white cast irons, deposited by an open-arc welding process, widely used in the mineral processing and steelmaking industries for wear protection. Erosion tests were carried out with quartz sand, silicon carbide grit and blast furnace sinter of two different sizes, at a velocity of 40 m s-1 and at impact angles in the range 20° to 90°. A monolithic white cast iron and mild steel were also tested for comparison. Little differences were found in the wear rates when silica sand or silicon carbide grit was used as the erodent. Significant differences were found, however, in the rankings of the materials. Susceptibility to fracture of the carbide particles in the white cast irons played an important role in the behaviour of the white cast irons. Sinter particles were unable to cause gross fracture of the carbides and so those materials with a high volume fraction of carbides showed the greatest resistance to erosive wear. Silica and silicon carbide were capable of causing fracture of the primary carbides. Concentration of plastic strain in the matrix then led to a high wear rate for the matrix. At normal impact with silica or silicon carbide erodents mild steel showed a greater resistance to erosive wear than these alloys. © 1995.
Resumo:
A method was developed for the estimation of the erosive wear of fiber-insulating materials. The wear increases with increasing impact velocity of the particles, increasing impact angle, particle size and the thermal ageing of the fibre elements. Through CFD simulation of the particle-containing gas flow, the erosion depth can be predicted.
Resumo:
Based on the hydrodynamic model and Shore Protection Manual (CERC - USA) we have calculated wave field characteristics in the typical wind conditions (wind velocity equal to 13m/s in the high frequency direction of the wind regime). Comparison between measured and calculated wave parameters was presented and these results were corresponded to each other. The following main wave characteristics were calculated: -Pattern of the refraction wave field. -Average wave height field. -Longshore current velocity field in surf zone. From distribution features of wave field characteristics in research areas, it could be summarized as following: - The formation of wave fields in the research areas was unequal because of their local difference of hydrometeorological conditions, river discharge, bottom relief… - At Cuadai (Dai mouth, Hoian) area in the N direction of incident wave field, wave has caused serious variation of the coastline. The coastline in the whole region, especially, at the south of the mouth was eroded and the foreland in the north of the mouth was deposited. - At Cai river mouth (Nhatrang) area in the E direction of incident wave field, wave has effected strongly and directly to the inshore and channel structure. - At Phanthiet bay area in the SW direction of incident wave field, wave has effected strongly to the whole shoreline from Da point to Ne point and caused serious erosion.
Resumo:
The paper presents some results of the research programs which had been performed during 1996-1999 (“Studying of river-sea interaction in the mouth of Tien river” and KHCN.06.08). Based on these results the morphological schemes of the shore areas from Tiengiang to Camau were compiled; causes and mechanics of accumulation and erosion were also determined. These results may be used as scientific basis for forecasting the development of the shoreline, it will contribute to the management, protection and reasonable exploitation the shore areas.
Resumo:
An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester. © 2004 Elsevier B.V. All rights reserved.